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Abstract 
Agent-based modeling (ABM) is a novel computational methodology for representing the 
behavior of individuals in order to study social phenomena. Its use is rapidly growing in many 
fields. We review ABM in economics and finance and highlight how it can be used to relax 
conventional assumptions in standard economic models.  ABM has enriched our understanding of 
markets, industrial organization, labor, macro, development, public policy and environmental 
economics. In financial markets, substantial accomplishments include understanding clustered 
volatility, market impact, systemic risk and housing markets. We present a vision for how ABMs 
might be used in the future to build more realistic models of the economy and review some of 
hurdles that must be overcome to achieve this. 
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I. Introduction: What is Agent-Based Modeling? 
The emerging computational methodology of agent-based modeling (ABM) can 

improve the explanatory power of economics by permitting the relaxation of assumptions 
that are commonly used in mathematical models for reasons of analytical tractability. 
This article is an introduction to ABM in economics and finance, and to some of its major 
accomplishments so far, the current state of the art, and promising new directions. 

Agent-based computing goes by many names and acronyms depending on the 
field in which it is employed—it is called agent-based modeling in most of the social 
sciences, multi-agent systems (MAS) in computer science, individual-based modeling 
(IBM) in ecology. It refers to a class of computational techniques that have proven useful 
as a way to represent individual behavior for purposes of studying social phenomena.1 
Models of this type feature a population of objects called agents, which are typically 
heterogeneous and situated in an economic or social environment. The individual agents 
are given explicit rules of behavior, which can be quite general—as in ‘seek greater 
utility’—or very specific (e.g., ‘lower prices by 5% if inventory exceeds target levels’). 
The agents interact directly with one another through social, spatial, or physical networks 
that are either exogenously specified or endogenously generated. Such models may 
produce conventional agent-level equilibria (e.g., Nash equilibria), or can yield perpetual 
dynamics at the micro-level as agents constantly adjust their behaviors. Importantly, the 
aggregate level is not explicitly pre-specified. Rather it emerges from the myriad 
interactions of the agents. The majority of models of this type implement the agents as 
software objects, each with local state information or data, their rules of behavior being 
functions or methods of the objects. Economists who employ these methods sometimes 
use the phrase agent-based computational economics (ACE), and we shall treat this 
expression and its acronym as synonyms for ABM.2 This survey covers the use of such 
computational agents in economics and finance over the past 60 years, reviewing what 

                                                
1 At the dawn of the digital computation era economists, operations researchers, game theorists, and other social 
scientists were among the early adopters of computers (e.g., Mirowski, 2001). Early uses included the manipulation of 
large matrices in input-output models (Leontief, 1951), statistical analyses of economic data (Brown, Houthakker and 
Prais, 1953), estimation of macro models from aggregate data (Klein and Goldberger, 1955), linear programming 
(Dorfman, 1951, Dorfman, Samuelson and Solow, 1958) and other kinds of mathematical programming (Kemeny, 
Morgenstern and Thompson, 1956), numerical solution of analytically intractable microeconomic models (Cohen and 
Cyert, 1961), and even theorem proving (Newell and Simon, 1956). It is also the case that novel uses of digital 
computing—beyond numerical analysis, statistical methods, and mathematical logic—soon appeared. Specifically, 
Orcutt and co-workers (1961) pioneered microsimulation models, a type of stochastic simulation that remains in use 
today, primarily for policy purposes (e.g., Bergmann, Eliasson and Orcutt (1980), Urban-Brookings tax model (Rohaly, 
Carasso and Saleem, 2005)). At about this same time the Carnegie School invigorated the theory of the firm via 
computational models of intra-firm (organizational) behavior (Cyert and March, 1963). System dynamics (SD) tools 
were developed at MIT in the 1950s and ‘60s (Forrester, 1958, 1969), primarily as a way of modeling aggregate stocks 
and flows of various socially-relevant variables, often from a policy perspective. While some early applications of SD 
(e.g., Meadows et al., 1972) proved controversial among economists (Ridker, 1973), it has been broadly applied in a 
variety of contexts (Sterman, 2000). Some of these new uses of digital computation fell under the broad category of 
simulation, and within operations research (OR) a methodology for discrete event simulation (e.g., Conway, Johnson 
and Maxwell, 1959) arose for analyzing military and business processes. The post World War II era also gave birth to 
artificial intelligence (AI), a major thematic area of computer science, with strong cross-over into psychology and the 
behavioral sciences via the birth of cognitive science (Newell and Simon, 1972). 
2 See the Handbook of Computational Economics, vol. 2, edited by Tesfatsion and Judd (2006) and vol. 4, Hommes 
and LeBaron eds. (2018). Arguably, the modifier ‘computational’ is redundant in ACE if one understands ‘agent’ in 
ABM as referring to software agents. 
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has been accomplished, describing current practice and looking to future prospects, while 
assessing potential bottlenecks to further progress.3 

This is a propitious time for ABM due to a confluence of factors. Continued 
advances in computing hardware, largely driven by Moore’s law (Nagy et al., 2011), 
makes bigger models ever more feasible. (See the final section). When combined with the 
growing quantity and availability of high quality data (Einav and Levin, 2014) from both 
administrative and commercial sources, large-scale, empirically-grounded ABMs are 
becoming possible and have recently begun to appear. Furthermore, the ability to express 
behavior algorithmically, grounded in data from laboratory (e.g., Hommes, 2011) or field 
experiments, offers expanding opportunities to express economic processes 
computationally, with greater verisimilitude than conventional analytic models.  

For these and other reasons we review below, we forecast growing utilization of 
ABM by economists. ABM provides a novel, flexible technology that is capable of 
rendering models in the conventional vocabulary of maximizing agents who face 
constraints. However, it also permits relaxation of assumptions commonly made in 
theoretical models for mathematical tractability, and so provides an alternative when 
realism is more important than conceptual simplicity. By facilitating the generalization of 
mathematical models through more realistic and behaviorally-grounded representations 
of human behavior, ABM is well-positioned for growth in all the social sciences as 
computing technologies progressively penetrate most spheres of research even further. 

With a few caveats, we see agent-based modeling as a complement rather than a 
substitute for conventional economic modeling. There are many problems that are 
difficult to address with conventional methods that are naturally addressed by ABM, and 
vice versa. There are also many problems where the two are coming into direct 
competition, but ABM’s strengths and weaknesses are sufficiently different than those of 
conventional methods that it provides useful diversity in the space of solutions. Where 
the two are in competition, the accumulation of empirical evidence will eventually decide 
which, if any, of the two approaches become dominant. The time has come to make a 
more serious effort to develop better ABMs and begin accumulating such evidence. 

A. ABM as Computationally-Enabled Economics, from the Bottom Up 
Essentially all of the sciences today have been revolutionized by digital 

computation. Computers are used to generate numerical solutions to analytically 
intractable mathematical specifications, to relax unrealistic assumptions, and to 
systematically integrate newly available data into models. Biologists now model whole 
cells computationally (Karr et al., 2012, Waltemath et al., 2016, Goldberg et al., 2018), 
consisting of hundreds of thousands of chemical reactions. They simulate the role of all 
genes in large-scale regulatory (Zhu et al., 2008) and signaling (Pawson, 1995, Janes and 
Lauffenburger, 2013) networks . Brain models consisting of billions of digital neurons 
are now possible (Markram, 2006, 2012), with the hope of eventually representing 
cognition in biological terms. In chemistry, medically-significant compounds are 
modeled computationally (Lewars, 2011) in advance of being synthesized in the lab. In 
fluid mechanics, analytically intractable turbulent flows can now be rendered 
                                                
3 This article is not a tutorial on how to create an ABM in software. Gilbert (2008) is an overview of the agent modeling 
process. Good textbooks now exist on ABM programming (Railsback and Grimm, 2011, Wilensky and Rand, 2015). 
See Appendix 3 of this article for background on how to create ABMs in software. 
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computationally with great verisimilitude, with eddies and vortices emerging from local 
conditions in flow fields (Hoffman and Johnson, 2007, Duraisamy, Iaccarino and Xiao, 
2019). In astrophysics and planetary science large-scale computational models play an 
essential role in explaining everything from the dynamics of galaxies (Norman et al., 
1996, Binney and Tremaine, 2008) to the origin of Earth’s moon (Canup and Asphaug, 
2001, Canup, 2012). Supercomputing is an essential tool in atmospheric physics and 
oceanography (Gneitling and Raftery, 2005, Edwards, 2010). In all of these areas the 
basic processes that operate at the microscopic level are reasonably well-understood, but 
the emergence of novel structures at higher levels of organization is not. The digital 
computer has revolutionized science by giving us a tool for understanding such emergent 
phenomena. 

This is increasingly true in economics as well. While the number of theorems, 
corollaries, lemmas, and formal propositions appearing in economic journals has 
increased monotonically over the last half century4, it is frequently either difficult or 
impossible to arrive at closed-form, analytical solutions. This forces us to resort to 
numerical methods (Varian, 1992, Amman, Kendrick and Rust, 1996, Judd, 1998). 
Numerical economics is thus seen as a complement to extant economic theory (Judd, 
1997). While this style of computational economics provides explicit solutions to 
particular problems, its ultimate utility depends on the veracity of the underlying 
equations being solved. Such equations are often highly idealized, assuming continuity, 
smoothness, perfect arbitrage, rationality, and so on, which sometimes makes the 
relevance of the computed solutions to real economies unclear.5 

ABM is a different kind of computationally-enabled economics. Instead of starting 
with equations governing an economic process, derived from assumptions that may have 
been made for analytical tractability, one constructs a computer model, which imposes a 
very different set of constraints. Building such a model normally begins by specifying a 
population of agents and their behavioral repertoire. Instead of solving equations for 
equilibrium one simply lets the agents interact with one another; the behavioral rules 
produce specific agent behaviors and new agent states, and the system evolves as a 
dynamical system, from one state to another. Successful models produce states that are 
relevant to the economic process being modeled. Unsuccessful models do not. Each 
realization of an ABM is a sufficiency theorem (Newell and Simon, 1972): IF agents start 
with certain initial states, S, and engage in specific behaviors, B, THEN after some 
number of interactions, N, they will have definite new states, S’ = B(S, N); (S, B, N) are 
sufficient t6o produce S’. While ABMs often have pseudo-stochastic elements, normally 
each model run is deterministic, in the sense that a given initial condition and random 
number seed always produces in the same results. Theorems of this type have limited 
generality but by making many runs of a specific model and allowing random seeds or 
other stochastic elements to vary, as in Monte Carlo simulation, the generality of the 

                                                
4 As a crude measure of this we count 45 such statements in the Jan. 2016 issue of the American Economic Review, 38 
in the Jan. 2006 issue, 20 in the Jan. 1996 number, 18 in Jan. 1986, 6 in Jan. 1976, 4 in Jan. 1966, 2 in Jan. 1956, and 
none in previous Jan. issues of 1946, 1936, 1926 and 1916. 
5 For example, in Judd’s (1998) textbook heterogeneous agents are only encountered in the last chapter, and only for N 
= 2 such agents. 
6 Determinism can be lost when ABMs are executed in parallel . 
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model results can be assessed and distributional properties of agent states characterized. 
Below we list a few features that ABMs often possess: 

• One or more populations of agent software objects, each agent representing an 
individual or group (e.g., a firm) with local state information (e.g., income); 

• Agent behavioral specifications that are conditional on the state of the agent and 
involve either direct or indirect interactions with other agents; 

• An external environment that agents are embedded in, e.g. aggregate economic 
variables (e.g., prices, interest rates), interaction networks, or a spatial landscape; 

• A scheme for agent updating; 
• Data gathering and statistical facilities for assessing the state and behaviors of the 

agents and environment, summarizing results and assessing model performance; 
• There is typically a visualization engine to depict the activity of the agents.  

ABMs are often run in an integrated development environment that permits the user to 
analyze and debug her model, providing facilities for making large numbers of runs by 
varying parameters and storing a record of each simulation. 

It is also interesting to note what is normally not present in ABMs. Because ABMs 
are simulated at the micro level, there are typically no equations that explicitly relate 
aggregate states to agent-level states (even if they may exist implicitly via aggregation 
and accounting relations). Although it is common for individual agents to have 
mathematical representations of their environment as they try to decide how to behave, 
this is not necessary, and such representations may be quite different than rational 
expectations. While an ABM may evolve into a configuration that is close to an 
equilibrium, this comes about as a consequence of the behavioral rules the agents are 
following and agent-level interactions rather than being imposed by fiat. 

The existence of this new approach to economic modeling comes at a time when 
behavioral and experimental economics have made substantial progress and offer novel 
ways for representing what humans actually do (Gigerenzer and Selten, 2001). ABM is 
well suited to take full advantage of our new knowledge of human behavior. Traditional 
models in economics begin by assigning a utility function (or some other form of 
preferences) to each agent and then deriving agent behavior from the assumption that 
each agent maximizes her utility. ABM takes a more agnostic approach. Agents may 
attempt to maximize utility but they may not succeed in doing so. Or they could have 
optimal response functions to given payoffs but they might make errors. Alternatively, 
ABMs often specify agent behavioral rules directly, e.g. by stipulating heuristics that 
agents may select from or learning algorithms that allow their behaviors to adapt. 
Because such rules do not require complicated optimization, they tend to be 
computationally more tractable (Michalewicz and Fogel, 2000). Gigerenzer (2000) and 
others (e.g., Kahneman, 2011) have also argued that such specifications can provide a 
more accurate model of human behavior. Incorporating more realistic models of human 
behavior offers rich new possibilities for ABM. 

Exciting developments in the science of networks (Newman, Barabasi and Watts, 
2006, Vega-Redondo, 2007, Jackson, 2008, Schweitzer et al., 2009) provide a new lens 
to look at local interactions at the same time computational tools for network analysis and 
visualization have become available. For many applications agent-based models can be 
viewed as a generalization of network models. In a network model one specifies nodes, 
which might for example be agents, and links, which might be the agent interactions. In 
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an ABM one adds agent behaviors and interaction rules so that the dynamics can be 
simulated. There is thus a natural progression from simple network models, to simple 
ABMs, to more complicated and realistic ABMs. We will provide an example of the 
success of this approach when we discuss systemic risk in finance in section II.B. 

It is important to stress that the universe of ABMs is itself very heterogeneous, 
ranging from very simple toy models to complicated models that attempt to incorporate 
many features of the real world. One can distinguish three types: (1) purely theoretical 
models with little or no empirical ambition, illustrating a particular mechanism or 
shedding light on qualitative, stylized fact(s); (2) models that quantitatively reproduce 
aggregate economic data, and which serve to link micro and social levels; (3) models 
quantitatively reproduce microdata, e.g. at the level of firms or households (see Section 
III.H)7. We will review models at all three levels. 

Increasing availability of micro-data (e.g., Mian, Rao and Sufi, 2013) potentially 
gives us the ability to measure the full range of heterogeneity present in populations and 
to incorporate it into models at level (3) (Guvenen, 2011) in ways that may not be easily 
achievable through more traditional approaches to macroeconomics. These new 
capabilities may help economists use new kinds of behavioral specifications and other 
abstractions in order to realize new types of models that some have called for (e.g., 
Kristol and Bell (1981), Kirman (1989, 2010), Hahn (1992), Stiglitz (2009), Farmer and 
Foley (2009), Colander et al. (2009), and Trichet (2010)). 

B. Usefulness of ABM for Research in Economics and Finance 
Models are idealizations. Ideal types are not exact statements about how the world 

works but rather approximations that are easy to write down and analyze. They facilitate 
modeling. An abstraction’s value may derive from the closeness with which it 
approximates reality. Alternatively it may be such a gross approximation as to be 
empirically false but valuable nonetheless because it permits a model that is otherwise 
intractable to be solved. Each of the modeling abstractions we teach economics graduate 
students has a mixture of these features: it approximates reality to some degree while 
facilitating analysis. The status of these abstractions as imperfect but necessary for 
progress is well understood, for much of research in economics amounts to the 
replacement of an idealization by something with higher fidelity. Indeed, the research 
literature in economics is largely composed of work that replaces one or two of the 
standard assumptions, generating conclusions that encompass but are different from those 
produced by the usual specifications.  

Table 1 below lists important features of economic models in the first column and 
standard neoclassical abstractions in the second, roughly in line with what is taught (e.g., 
Mas-Colell, Whinston and Green, 1995). The third column, labeled “increased realism”, 
gives some of the ways the standard idealizations have been relaxed or generalized in the 
economics literature. While any particular entry in that column may have its own 
moniker—e.g., behavioral economics for the fourth row—the column as a whole ranges 
over topics that are foundational to the study of complex adaptive systems (CAS); see 
Anderson, Arrow and Pines (1988), Mirowski (1996), Arthur, Durlauf and Lane (1997), 

                                                
7 Lustick and Miodownik (2009) make a similar point for ABMs in politics. 
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and Blume and Durlauf (2005).8 Applications of these ideas to economics are now 
commonly called complexity economics (e.g., Kirman (2011), Arthur, Beinhocker and 
Stanger (2020), Arthur (2021)).9  
 
Model feature Neoclassical conception Increased realism 
Number of agents representative (1, 2, N, infinite) many (preferably full-scale) 
Diversity of agents homogeneous, a few ‘types’ heterogeneous, idiosyncratic agents 
Agent goals, objectives static, scalar-valued utility evolving, other-regarding 
Agent behavior rational, maximizing purposive, adaptive, biased, myopic 
Learning individual, fictitious play derived from behavioral science or AI 
Information centralized, possibly uncertain distributed, tacit 
Beliefs coordinated for free uncoordinated, costly to coordinate 
Interaction topology equal probability, well-mixed social networks, fixed or changing 
Markets auctioneer, global price vector decentralized, local prices 
Firms and institutions unitary actors, production functions multi-agent groups and organizations 
Selection single level multi-level, group selection 
Governance benevolent planner, median voter self-governance, incentive problems 
Temporal structure static, impulse tests, 1-shot dynamic, full transient paths 
Source of dynamism exogenous, outside economy endogenous to the economy 
Properties of dynamics smooth, differentiable irregular, volatile, heavy-tailed 
Character of dynamics Markovian, path is forgotten path-dependent, history matters 
Solution concepts equilibrium at agent level steady-state at aggregate level 
Multi-level character Neglected or simple micro-macro many levels, higher ones emerge 
Methodology deductive, mathematical abductive, computational 
Ontology utilitarian agents who optimize ecology of purposive interacting agents 
Policy approach designed from the top down evolved from the bottom up 

Table 1: Contrast between standard economic abstractions and more realistic ones 

In economics and finance, standard idealizations take the form of things like 
rational or representative agents, global price vectors, and Nash equilibrium. What keeps 
economists from moving from the middle column to the right are a variety of conceptual, 
mathematical and econometric difficulties that can make richer models intractable.10 
Agent computing offers a way to explore the right column by removing analytical 
barriers. For most rows there exist ABMs relevant to the right column. ABMs are a new 
tool in the economist’s toolbox that can be used to move from the center toward the right 
column. Unfettered by the mathematical strictures that constrain economic models that 

                                                
8 For succinct introductions to CAS see Holland (1998, 2012, 2014) or Bak (1996); for a social science point-of-view 
there are Miller (2015) and Miller and Page (2007); Boccara (2010) is a more mathematical treatment with a natural 
science focus; for a computer science perspective consult Mitchell (2009) while Downey (2012) provides working 
ABM code; Earlier versions of this table appear in Axtell et al. (2016), Axtell (2017). For a similar but more 
evolutionary perspective see Bowles (2004: 479). 
9 Krugman’s (1996) take is very readable, albeit dated; Durlauf (2012) expresses skepticism of the relevance of 
complexity to economics despite earlier views to the contrary; others are optimistic (cf. Colander (2000), Potts (2000), 
Berry, Kiel and Elliott (2002), Kirman (2004), Rosser (2004), Beinhocker (2006), Axtell (2007), Farmer and Foley 
(2009), Farmer and Geanakoplos (2009), Rosser (2010), Holt, Rosser and Colander (2011), Gallegati and Kirman 
(2012), Colander and Kupers (2014), Arthur (2015), Haldane and Turrell (2018)). 
10 In his masterful Engine Not a Camera Donald Mackenzie (2006) has argued that the goal of the middle column was 
never descriptive when it came to finance. Rather, when markets did not conform to the tenets of mathematical 
economics, the normative quickly displaced the positive in the guise of financial engineering. 
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must be written down and solved analytically, ABMs serve as a potent new methodology 
for accelerating progress in economics. 

ABM facilitates movement towards the right column by combining the expressiveness 
of computer code with a computational methodology that does not need to explicitly pre-
specify aggregate outcomes. Agent computing permits one to write economic 
specifications that have high fidelity with the real-world, whether behavioral, 
institutional, or administrative. For example, production decisions can often be 
represented as recipes of nested IF…THEN…ELSE statements, as in IF the inventories 
are below a threshold THEN ramp up production by 10%. The expressiveness and 
behavioral suppleness that is characteristic of ABM means that more realistic models can 
be built that do not contain assumptions made for mathematical expediency. One may 
profitably consider using ABM in lieu of or in addition to mathematical analysis 
whenever relaxation of standard specifications produces analytical difficulties. 

At present ABM is not widely used in mainstream economics. It is our thesis that 
the time has come for this to change. There are many important problems where ABM has 
already made substantial contributions. As we will discuss, in finance these include 
practical applications for understanding systemic risk and theoretical explanations for key 
phenomena such as clustered volatility and the functional form of market impact. In 
economics these include better understanding of firm dynamics, macroeconomics with 
heterogeneous and behavioral agents, and in a variety of other areas. We believe that with 
the ever-increasing availability of computational power, behavioral knowledge, and 
micro-data, ABM has the potential to make substantial contributions in most areas of 
economics. 

II. ABM Antecedents and Exemplars 
Like many technological innovations, ABM is not the result of a single ground-

breaking idea but is rather a non-trivial recombination of many pre-existing technologies, 
permitting a new kind of computational model. In this section, to properly situate ABM 
within wider advances in computational science, we briefly describe key prior 
developments as they arose historically. While there are important connections to 
physics, ecology, and evolutionary biology, the main touchstones for modern agent 
computing in economics and finance lie in long-standing connections to computer 
science, specifically AI, and OR.11 We then go on to describe some of the pioneering 
ABMs that suggested its potential usefulness for economics and finance. 

The notion of using digital computation to model individual households or firms 
and study their aggregate behavior grew up in the late 1950s among several distinct 
groups of economists (Orcutt, 1957, Clarkson and Simon, 1960, Shubik, 1960b). While 
their motivations were varied—some saw computation as a way around mathematical 

                                                
11 Mirowski (2001) analyzes interactions between these fields but fails to distinguish agent computing. For 
perspectives closer to ours see Builder and Bankes (1991), Bankes (2002), Bonabeau (2002), or Axelrod (2003). The 
rise of digital computation gave rise to a new field of simulation science, primarily in operations research and industrial 
engineering (Conway, Johnson and Maxwell, 1959, Conway, 1963); see Macal (2016) for an overview of ABMs in 
management science and operations research and the book of North and Macal (2007) for applications to business. 
Several specialized languages appeared for creating simulation models, including GEMS (from General Electric), GPSS 
(General Purpose Simulation System), SimScript—developed by future Nobelist Harry Markowitz—and SIMULA, the 
first object-oriented computer programming language (Banks and Carson III, 1984, Fishwick, 1995). 
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difficulties of aggregation, others thought the key advance was the ability to treat 
decision-making as dynamic. All were optimistic that digital computers would facilitate 
the creation of models having greater veracity than conventional ones, e.g., “…the 
simulation approach has emerged, as a practical means of studying and using more nearly 
realistic models of economic systems” (Orcutt, 1960). 

This led to an effort to move beyond Marshall’s (1920) representative firm and 
the typical consumer to build models having empirically-justified heterogeneity. This 
came to be known as microsimulation (Orcutt, 1957, 1960, Orcutt et al., 1961), which is 
similar in spirit to ABM in many ways. In microsimulation it is typical to model the 
behavior of many distinct households using more or less conventional constrained 
optimization, but realized computationally (Bergmann, 1980, Bennett and Bergmann, 
1986). These models explicitly simulate consumption and work decisions (Bergmann, 
1990), savings levels, tax compliance (Rohaly, Carasso and Saleem, 2005), and so on. 
Early researchers in this area would have benefitted greatly from today’s programing 
languages and hardware. This is clear from Orcutt (1960), who lamented that the building 
blocks used in microsimulation models all had to be coded individually, while seeming to 
call for automated replication as is now common in all object-oriented languages. In 
essence, the pioneers of microsimulation had many of the same motivations as modern 
ABM researchers but had inadequate tools, both too little hardware and too rudimentary 
software. 

Contemporaneous with these developments, computational theories of the firm 
were developed in the late 1950s by the Carnegie School of Herbert Simon, Richard 
Cyert and James March, all of the Graduate School of Industrial Administration (GSIA) at 
the Carnegie Institute of Technology. Their research program aimed to better understand 
how firms actually behaved by studying a particular firm in great depth. Their path-
breaking book A Behavioral Theory of the Firm (Cyert and March, 1963) opened up the 
study of individual organizations to computational approaches. Because these behaviors 
tended to be more rule following and heuristic than optimizing, it was different in 
character from microsimulation. Work that grew out of this tradition includes the garbage 
can model of decision making in organized anarchies (Cohen, March and Olsen, 1972).12 

The dominant use of early digital computing was for solving equations 
numerically, e.g., to support nuclear weapons research (Edwards, 1996, Mirowski, 2001) 
and weather forecasting (Edwards, 2010). However, other, non-numerical uses soon 
emerged, such as reproducing brain behavior (Ashby, 1952, 1956, von Neumann, 1958). 
Of interest as a precursor to ABM are cellular automata (CA), which are simple finite 
automatons connected on a lattice. These were pioneered by Ulam (1952) and utilized by 
von Neumann for the creation of self-reproducing systems (von Neumann and Burks, 

                                                
12 In the late 1950s strategy games were inserted into the curricula at some business school, including the GSIA at 
Carnegie (Cohen et al., 1960), UCLA (Jackson, 1959), and elsewhere (Cohen and Rhenman, 1961). These were an 
offshoot of war-gaming and military simulations that were already widely practiced in non-digital form in the first half 
of the 20th C. These tools and techniques were augmented by digital computers in the 1950s (Shubik, 1960a). They are 
a good example of qualitative, largely non-numerical computation in which no equations are solved. More recently, 
ABMs have found wide use by the military. For example, force-on-force models were traditionally treated as systems of 
differential equations, e.g., the Lanchester equations (Lanchester, 1916, Engel, 1954), but modern combat models are 
increasingly agent-based. Each soldier, each weapon system, and even each unit of ammunition present is treated as an 
object. Important early work on the ABM approach to combat models includes Ilachinski’s ISAAC model and 
EINSTEIN software toolkit (2004). 
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1966).13 CAs became known to the scientific public in the 1970s through John Conway’s 
Game of Life (Gardner, 1970).14 More directly relevant to economics, Peter Albin (1975) 
used CAs to model economic development and others studied urban dynamics with them 
(Tobler, 1970, 1979, Couclelis, 1985, 1989).15  
 

We have suggested above that ABMs can be viewed as a form of non-numerical 
computing in which there are typically few if any equations governing agent interactions 
that are solved in the traditional sense. While individual agents often use mathematical 
expressions in their own reasoning, macro (multi-agent) phenomena are produced in 
ABMs by directly aggregating individual actions. This makes it natural to use ABMs to 
study emergent outcomes.  

A simple example is the late Thomas Schelling’s model from the 1960s of 
residential segregation. This is perhaps the best-known ABM in economics. The idea that 
a modest number of whites moving away from small pockets of black immigration might 
‘tip’ neighborhoods in major American cities was articulated by Grodzins (1958). 
Schelling demonstrated that high levels of segregation can result from the bottom-up, 
decentralized home location decisions of individual households, even if none of them 
have particularly segregationist preferences (Schelling, 1969a, 1971a, b, 1972b).16 Figure 
1 shows the progressive segregation of a 50 x 50 spatial grid when agents are happy 
having as few as three of their immediate 8 neighbors with the same color in a population 
with equal numbers of reds and blues. Unhappy agents move to any site where they 
would be happy. 17  Over time high levels of segregation emerge.  

The panel on the lower right is a depiction of segregation in Buffalo, N.Y. based 
on data from the 2010 Census. Note the gross similarity. It is important to keep in mind 
that no agent prefers a highly segregated aggregate outcome to a more integrated 
configuration in the model, but in a world of distributed, decentralized action there are 
simply many more social configurations that look like the extreme outcomes on display 
in figure 1 than more integrationist ones, and so it is not clear how such outcomes might 

                                                
13 This research investigated minimum specifications needed to have a machine reproduce itself logically. 
14 For more on the origins of the Game of Life see the biography of Conway by Roberts (2015). By looking only at the 
rules of the Game of Life it is very hard to see what will emerge once the rules are applied (Faith, 1998). 
15 CAs played an important role in the rise of ‘artificial life’ (ALife) in the late 1980s (Langton, 1989, Langton et al., 
1992, Langton, 1994). ALife models typically feature some highly idealized representation of an ecological or social 
process using a population of simple computational entities in order to study phenomena at a higher organizational 
level (Hillebrand and Stender, 1994). Reynolds’ (1987) demonstration that realistic-looking bird flocks could be 
generated from a few simple rules of individual behavior is a quintessential example. 
16 Interestingly, Schelling’s early efforts were not computational. Rather, he began working in one dimension but was 
convinced by Herbert Scarf that the exercise might be more clear in two dimensions (Schelling, 2006). Moving two 
kinds of coins around on a chessboard, with coins of the same kind preferring to be next to one another, he showed that 
widespread segregation characterized long run configurations of the model. Later, while visiting the RAND 
Corporation, he had the model rendered computationally (Casti, 1994) but felt not much new was learned from this 
exercise. Later he worked with a student to code a version of the model himself and wrote a long, unpublished essay 
entitled “On Letting a Computer Help with the Work” (Schelling, 1972a), which makes clear he understood the value 
of computational renditions of his model (Hegselmann, 2012). 
17 Schelling’s model is sometimes called a CA but this is not strictly correct as in most version of it the agents are 
mobile beyond their local neighborhoods. CAs are usually defined by strictly local interactions. For instance, Mirowski 
(2001) disagrees with the claim that the Schelling model was the first ABM in economics (fn. 48, p. 369) based on the 
belief that it is a CA (Mirowski, private communication, 29 August 2020). 
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be prevented. Schelling’s model has been elaborated in various ways, both to render it 
more realistic (Ingram, Kain and Ginn, 1972, Vandell and Harrison, 1978), to give it 
rigorous foundations (Young, 1998, Zhang, 2001, 2004a, b, Vinkovic and Kirman, 2006, 
Benard and Wiler, 2007, Pancs and Vriend, 2007, Dall'Asta, Castellano and Marsili, 
2008, Gerhold et al., 2008, Zhang, 2011, Brandt et al., 2012, Barmpalias, Elwes and 
Lewis-Pye, 2014), to generalize it (Bruch and Mare, 2006, Benard and Wiler, 2007), and 
to render it on realistic geographies (Crooks, 2010).18 But its real power derives from its 
simplicity.19 

<Figure 1 about here> 
By the 1970s the folk theorem of game theory indicated that a wide variety of 

strategies could be supported as equilibria in repeated games, providing little guidance 
for which strategies one might expect to encounter in real-world play of such games. This 
situation served as the basis for an innovative computational experiment run by Robert 
Axelrod at the University of Michigan in the early 1980s. He solicited strategies to play 
the prisoner’s dilemma game in round-robin fashion and received many submissions, 
from simple to complex. In the resulting tournament he discovered that a relatively 
simple strategy, submitted by Anatol Rappaport—so-called tit-for-tat—did very well 
against more elaborate strategies, winning the tournament. He ran a second tournament 
with new strategies and found that tit-for-tat won again. He described his findings in a 
now classic book, The Evolution of Cooperation (Axelrod, 1984). The strategies used in 
his tournaments consisted of a series of small-scale ABMs. This was an early use of 
heterogeneous computational agents in a competitive environment, which was very novel 
at the time. 

By the 1980s conventional AI had succeeded in building deep representations of 
highly restrictive domains (e.g., chess), but had largely failed to create anything like 
general-purpose intelligence. Distributed artificial intelligence (DAI) began from the 
perspective that agents can learn from one another (Gasser and Huhns, 1989). Very soon 
the individual AIs in DAI models were being given purposive behavior via utility 
functions, preferences, goals, and so on, and in a matter of a few years the field was 
transformed into multi-agent systems (MAS), with research monographs (Maes, 1990, 
Wooldridge and Jennings, 1995b, O'Hare and Jennings, 1996, Weiss, 1999) and 
textbooks (Ferber, 1999, d'Inverno and Luck, 2001, Liu, 2001, Wooldridge, 2002) soon 

                                                
18 Schelling’s first descriptions of the segregation model were terse (1969a), unpublished (1969b), or somewhat 
informal (1971b), the latter appearing in a Washington-based policy journal. Meeting some resistance from economists, 
he described the model at length in volume 1, number 2 of the then new J. Math. Sociology (Schelling, 1971a). 
Remarkably, in the previous (very first) issue of that journal there appeared a paper having ambitions comparable to 
Schelling’s, albeit considerably broader. It was entitled “The checkerboard model of social interaction” and authored 
by James Sakoda, a pioneer in computational sociology (Sakoda, 1971). The model developed by Sakoda admits 
Schelling’s as a special case (Hegselmann, 2017), and derives from his dissertation (Sakoda, 1949). The latter is an 
extraordinary document, little cited but essentially a generation ahead of its time in seeing the possibilities of building 
computational models of a variety of social phenomena using CA-like specifications.  
19 Contemporaneous with Schelling, Gordon Tullock and Colin Campbell (1970) experimented with simple models of 
voting and committee behavior in situations too complex to be solved analytically. They rendered their models 
computationally, as described in detail by Wallick (2012), essentially another proto-ABM. 
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appearing, including ones blending MAS concerns with game theory and economics 
(Parsons, Gmytrasiewicz and Wooldridge, 2002, Shoham and Layton-Brown, 2009).20,21 

In early work on traffic it was conventional to model vehicular and pedestrian 
traffic as if it were fluid flow in a conduit (Transportation Research Board, 1961). Such 
models involved computational fluid dynamics, which was initially done on mainframe 
computers and later on vector supercomputers. In the mid 1990s researchers at Los 
Alamos National Lab (LANL) took an agent-based approach to the subject, giving driving 
rules to individual vehicles and studying traffic jams and related aggregate phenomena as 
emergent (Nagel and Rasmussen, 1994, Nagel and Paczuski, 1995, Nagel and Barrett, 
1997). This proved to be a more flexible and useful approach, as it was possible to 
incorporate GIS map layers, road grids, and even real-time traffic data directly into 
models. Soon the TRANSIMS code (Barrett et al., 1995, Nagel, Beckman and Barrett, 
1998) was being instantiated at city-scale, creating high-fidelity models of traffic flow 
involving millions of vehicles (Barrett and Beckman, 1995, Beckman, 1997). Traffic has 
been one of the great success stories of ABMs and today it is rare to find traffic models 
built any other way. Later, pedestrian movement was similarly revolutionized by ABM 
(Helbing, Farkas and Vicsek, 2000, Farkas, Helbing and Vicsek, 2002).22 

Agent-based computational models in ecology began appearing sporadically 
before 1990 and more systematically afterward.23 In ecology it is conventional to call this 
‘individual-based modeling’ (IBM).24 The driving forces behind the development of IBM 
grew out of a dissatisfaction with models based on continuous populations with dynamics 
represented through ordinary and partial differential equations (Grimm and Railsback, 
2005). Formalisms in which individual animals are explicitly modeled may have closer 

                                                
20 An important technical contribution of computer science to the agent modeling paradigm was object-oriented 
programming (OOP), which came of age with the SmallTalk and Objective-C languages in the early to mid-1980s. 
OOP refers to the encapsulation into software objects consisting of data elements (aka instance variables) and methods 
for manipulation of those data, resulting in self-contained and often reusable code. Agents are naturally implemented as 
objects, and their interactions are succinctly captured by object methods. Today, OOP is standard for implementing 
ABM and MAS (Wooldridge, 2002). 
21 All of this was happening as the Internet came to fruition and the idea of local, networked devices was replacing 
older notions of centralized computing facilities. At this time certain computer scientists began viewing groups of 
heterogeneous computing resources as ecologies (Huberman, 1987), invoking biological and economic formalisms for 
understanding how resources might be shared across devices, within networks. Curious ideas like market-based control 
(Clearwater, 1996) and market-oriented programming (Wellman, 1996) were put forward by crossing over ideas from 
economics and computer science, clearly indicating a certain appetite among computer scientists for importing extant 
ideas from the social sciences (Huberman and Hogg, 1994). See Das (2016) for a survey of the literature in this field, 
with a particular focus on finance. 
22 ABM has also played a role in the NextGen Air Transportation System (e.g., Calderón-Meza, 2011). 
23 A recent ABM textbook, while focused broadly, is written by ecologists (Railsback and Grimm, 2019). 
24 IBM, instead of ABM, was proposed as the name for the entire field back in the early days of the Santa Fe Institute 
when the SWARM agent modeling framework was first being created. It will come as no surprise that when 
‘individual-based modeling’ was proposed by some as a good descriptor it was vetoed by Chris Langton since the 
acronym for it is identical to the standard name of a large U.S. corporation active in the computing field, which was 
thought to be at least confusing if not more sinister. Another name for the field that did not stick was ‘actor-based 
modeling’. This is because in sociology ‘stochastic actor theory’ already existed as an active research program, 
focusing mostly on social network models. 
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fidelity to the true spatial variability present in the field (Fahse, Wissel and Grimm, 
1998).25,26 

Another area in which ABMs had early success is epidemiology. Traditional 
models based on ordinary and partial differential equations assume that populations are 
homogeneous and well-mixed, i.e., that there are no network effects (e.g., Kermack and 
McKendrick, 1927). In the wake of 9/11 the U.S. National Institutes of Health (NIH) 
created the MIDAS project (Models of Infectious Disease Agent Study) to catalyze the 
development of better models of infectious disease spread and response. ABMs were a 
primary focus of MIDAS. As a result of this project there now exist a large number of 
ABMs relevant to a variety of diseases, including influenza, smallpox, SARS, MERS, 
Ebola, West Nile virus, and Zika, at both the national and international levels (e.g., 
Halloran et al., 2002, Eubank et al., 2004, Longini Jr. et al., 2005, Carley et al., 2006, 
Gemann et al., 2006). Epidemic ABMs have also been applied to a variety of pathological 
behaviors that have social origins, including smoking (Wallace, Geller and Ogawa, 
2015), drug addiction (Agar and Wilson, 2002, Hoffer, Bobashev and Morris, 2009, 
Heard, Bobashev and Morris, 2014), and obesity (Hammond, 2009). Most recently, 
ABMs have found important use modeling the effects of the SARS-CoV-2/COVID-19 
pandemic (Ferguson et al., 2020), where they are the tool of choice since comparable 
events have not occurred in the recent past and therefore there is little data on which to 
base statistical, econometric, or related models. 

A. ABM in Economics 
In this section we look at the literature on agents in economics from the past 30 

years and describe some of the most influential work.27 

1. Microeconomics and markets 
The most prevalent area of economics for the application of ABMs has been 

microeconomics and models of markets in particular. As an example, consider the most 
basic model in all of microeconomics, the supply and demand for a single homogenous 
good in one market. Typically, the behavior of people in such a market is represented by 
a downward sloping demand curve for buyers, with quantities and prices on the 
horizontal and vertical axes, and a supply curve for sellers, usually upward sloping. This 
is depicted graphically in all microeconomics texts and studied algebraically by the time 
students reach intermediate micro. The figure—normally drawn as two straight lines—is 
often accompanied by the assertion that markets operate at the intersection point. In 

                                                
25 Two early and influential IBMs were the JABOWA model of forest dynamics (Botkin, Janak and Wallis, 1972) and a 
model of fish cohort growth due to DeAngelis, Cox and Coutant (1980). Grimm and Railsback claim that neither of 
these pioneering efforts saw IBMs as a general-purpose approach, i.e., as a paradigm. Rather, Huston, DeAngelis and 
Post (1988) articulated a more unified vision for the role of IBMs in ecology as Hogeweg and Hesper (1990) did later. 
26 Progress in the 1980s-90s in CAs (Wolfram, 1983, 1984, 1986, Toffoli and Margolus, 1987, Gutowitz, 1990, 1991) 
led to applications in biology (Ermentrout and Edelstein-Keshet, 1993), including neurobiology, developmental 
biology, population biology, even cancer oncology. Since then CAs have given way to ABMs in many areas (e.g., 
Schlesinger and Parisi, 2001, Zhang et al., 2009, Chapa et al., 2013, Norton and Popel, 2014, Wang et al., 2015). 
27 Holland and Miller (1991) give an early statement of the potential of ABMs in economics. For a view of ABMs as 
artificial economies see Lane (1993a, b). The Handbook edited by Tesfatsion and Judd (2006) is thorough but dated. 
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general attainment of market clearing is known to be a hard problem.28 29 Early 
experiments (Smith, 1962) showed that it may or may not be a good assumption, 
depending on the circumstances (Bergstrom and Miller, 1997). 

 It is possible to use an ABM to model the way the agents behave in Smith’s 
experiments. No individual needs to know very much about how the market functions: 

1. buyers, who have heterogeneous internal valuations, will together create a 
downward sloping demand curve (Becker, 1962) , while 

2. sellers, with heterogeneous costs, will produce an upward-sloping supply curve, 
3. so if buyers pay less than their internal values and sellers try to cover costs, 
4. there can result relatively high market efficiency (Gode and Sunder, 1993). 

There are many examples that model local markets (cf. Palmer et al., 1994, Epstein and 
Axtell, 1996, Cliff and Bruten, 1997b). For a demonstration, see Professor Mark 
McBride’s website (http://www.memcbride.net/models/2014/7/11/zi-trading). This ABM 
features a user definable number of buyers and sellers whose internal valuations can be 
specified and from which supply and demand curves can be plotted. The supply and 
demand curves that emerge are much less regular than those found in microeconomics 
textbooks. After hitting ‘Go’, trades take place and the quantity exchanged is comparable 
to the point estimate of the supply and demand curves, as shown in figure 2, although 
rarely exactly the same. This leads students to realize that the point estimate of the 
textbook story is an approximation. By rerunning the model multiple times students see 
that (1) the same price and quantity never repeat, and (2) there is sufficient variability 
from run to run to show that the point prediction is just a central tendency and not the 
only thing that happens. Students can then ask how this changes as the size of the market 
increases, or as elasticities change. 

ABMs have the ability to enrich student understanding by treating economic 
phenomena as emerging from the bottom up as a direct result of the actions and 
interactions of purposeful individuals. This approach to economics turns student attention 
away from mathematical difficulties that may or may not be relevant for real markets to 
how people behave in more realistic market contexts. By utilizing the computer in ways 
that are richer than merely solving equations—by displaying model output visually, 
computing statistics dynamically, and permitting students to modify how models work—
a whole new way of teaching and learning economics is opened up. 
                                                
28 Technically, Brouwer and related fixed point problems are contained in the complexity class PPAD (Papadimitriou, 
1994), and it is not known if there exist polynomial algorithms for the computation of market-clearing prices and 
allocations, as the number of commodities increases; see Moore and Mertens (2011) for a pedagogical description of 
this complexity class. 
29 One line of research that is not very relevant to ABM, but which is sometimes confused with economic ABMs, 
concerns the computation of economic equilibria. Beginning with Scarf (1973, 1982) there is a large literature on 
efficient solution of fixed point problems in economics. This gave rise to certain specialized mathematical 
programming algorithms (e.g., the Eaves, Lemke, and Merrill algorithms (Todd, 1976)), in the wake of which so-called 
computable general equilibrium (CGE) models were born (Scarf and Shoven, 1984, Shoven and Whalley, 1992). 
Models of this type were widely adopted for policy and other applied work in economics and can yet be found in large 
institutional settings, e.g., the World Bank. Commercial software eventually emerged for the solution of CGE models 
(e.g., GAMS) and textbooks on the subject appeared (Thompson and Thore, 1992). Although such models can be used 
to represent the behavior of individual firms and other economic agents, they typically deal with only a few agents, or 
else represent an economy in overall supply and demand terms (i.e. no agents), solving for equilibria numerically. They 
are thus more top down than bottom up and do not focus on agent interactions. Such models are quite different from 
ABMs as the solution techniques are purely numerical and not representative of an economic process. The same is true 
for the solution of input-output models (Morgenstern and Thompson, 1976). 
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<Figure 2 about here> 
A wide variety of ABMs have been built to study markets without a centralized 

auctioneer (Leijonhufvud, 1967).30 This work includes Albin and Foley (1992, 1998), 
who looked at distributed, decentralized bilateral trading with local price formation and 
contrasted their results with Walrasian outcomes. They focused on the effects of price 
dispersion when no auctioneer is present, including welfare effects associated with the 
production of horizontal inequality, meaning similar agents can end up in quite different 
welfare states.31 The Sugarscape model of Epstein and Axtell (1996) extended Albin and 
Foley with heterogeneous agents, endogenous interactions, changing preferences, and so 
on. Wilhite (2001) investigated this same class of models for agents connected in various 
network topologies. Vriend (1995) looked at the self-organization of markets using a 
classifier system and later asked how such models relate both to the ‘invisible hand’ 
(Kochugovindan and Vriend, 1998) as well as to Austrian market process theory (Vriend, 
2002). Axtell (2005) studied the computational complexity of such markets and proved 
that exchange at local prices yields allocations in polynomial time—linearly in the 
number of agents and quadratically in the number of commodities—in contrast to the 
PPAD complexity of computing Brouwer fixed points (Papadimitriou, 1994). In essence, 
such decentralized exchange processes act like a giant distributed computation of Pareto 
optimal allocations, with final prices representing the marginal rates of substitution that 
all agents converge to in equilibrium.32 All of the above results pertain to pure exchange 
economies. Gintis (2007) built an ABM economy with production and studied its 
convergence to general equilibrium, finding many of the same phenomena on display in 
pure exchange, e.g., initial price dispersion, welfare effects, and so on. 

Kirman and Vriend (2000, 2001) took a more empirical approach in a model of 
the Marseille fish market, where they discovered that buyer-seller loyalty plays a large 
role and is often more important than price in purchase decisions. Vriend (2004) reviews 
a variety of distinct market forms that have been studied with ABMs. 

Continuous double auctions (CDAs) have been investigated using a tournament 
approach (Friedman and Rust, 1993, 1994), analogous to Axelrod’s prisoner’s dilemma 
tournament, with individual participants submitting computational strategies. No single 
strategy consistently outperforms others, while many sophisticated strategies seem to fare 
poorly. CDAs are commonly used in real-world markets, for stock markets, electric 
power, Treasury securities, and many others, and there are now ABMs of such markets, 
e.g., Farmer, Patelli and Zovko (2005), Nicolaisen, Petrov and Tesfatsion (2000), and 
Koesrindartoto (2004), respectively. Other kinds of auctions have been studied with 
ABMs (e.g., Hailu and Schilizzi, 2004, 2005, Hailu and Thoyer, 2006, 2007), while 

                                                
30 Analytical models of this type include Rader (1968), Feldman (1973) and Bell (1997), who derive conditions under 
which decentralized exchange yields Pareto optimal allocations, results analogous to the conventional welfare theorems 
of general equilibrium. 
31 Horizontal inequality refers to differences in welfare that arise between twins—agents having the same preferences 
and endowments in pure exchange—and was studied by Foley (1994). Inequality of this type does not arise in standard 
Walrasian equilibria because of the so-called equal treatment property (Green, 1972). 
32 While Cheng and Wellman (1998) have shown how to compute Walrasian equilibria in distributed fashion, their 
algorithm does not appear to represent any economic process that takes place in real economies. 
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computer scientists have provided software tools for configuring many different auction 
types (Wurman, Wellman and Walsh, 1998). 

Another microeconomic topic studied with ABM is bipartite matching, which has 
a wide variety of real-world applications, including marriage, college admissions, and 
assignment of medical residents. The well-known Gale-Shapley (1962) algorithm 
produces stable solutions via the so-called ‘deferred acceptance’ mechanism in a wide 
variety of circumstances (Roth and Sotomayor, 1990). Unfortunately, it also yields 
extremes of welfare, where proposers get maximal payoffs while acceptors receive far 
less (Knuth, 1976). Gale-Shapley matching is a centralized mechanism as no pair can be 
considered finally matched until all agents are paired. This is unrealistic in many 
circumstances such as marriage, where decisions must be made incrementally. This has 
led to a search for good decentralized matching models, e.g. Henrickson (2002) and 
Fuku, Namatame and Kaizoji (2006). Axtell and Kimbrough (2008) found simple 
distributed matching mechanisms exist that produce only a very small number of unstable 
pairs. They argue that the existence of such pairs is unlikely to lead to the unraveling of 
matches due to the low probability that unstably matched individuals encounter one 
another; related work includes (Anshelevich, Das and Naamad, 2013). 

2. Game theory 
ABMs have found broad use in game theoretic investigations, often by adding 

some feature to the specification of the game that is either not easy to handle analytically, 
e.g., networks, or else is simply not standard, e.g., agent memory. Following Axelrod’s 
work mentioned previously, there has been a large amount of research on the prisoners 
dilemma game using ABM. Evolutionary biologists, for example, have used 
computational agents to investigate the hypothesis that the ability for local populations to 
form in space might favor cooperation. Nowak and May (1992) fixed the position of 
simple agents in a two-dimensional space and let them play the prisoner’s dilemma with 
their neighbors using parallel updating. They discovered the formation of beautiful, 
dynamic, transient patterns that enabled relatively high levels of cooperation. However, 
(Huberman and Glance, 1993) demonstrated that the Nowak and May results were 
artifacts of their synchronous updating mechanism, and that any relaxation of it 
whatsoever broke all the beautiful patterns and caused the cooperative results to unravel 
into high levels of defection. This demonstrated that there are important devils in the 
details of how such ABMs are constructed. At a higher level, it demonstrates that the 
details of the social process can play an important role, e.g. whether information is 
revealed in a synchronous or asynchronous manner may dramatically effect outcomes. 
More recently, strategies associated with endogenous group formation and agents being 
able to select the group in which they play the game have been investigated with ABM. 
(Aktipis, 2004, 2006, 2008, 2011). 

The problem of the origins of cooperation is just one example of the problem of 
the emergence of social norms, conventions and institutions, which has received 
considerable attention from economists and other social scientists, as well as from 
philosophers and computer scientists.33 ABM has been used to study the situation where 

                                                
33 For work by economists see (Kandori, Mailath and Rob, 1993, Young, 1998, Burke, Fournier and Prasad, 2006); for 
other social scientists see (Coleman, 1964); philosophers (Lewis, 1969, Bicchieri, Jeffrey and Skyrms, 1997, Bicchieri, 
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there are multiple equilibria. Are agents able to coordinate on a “good” equilibrium, and 
if so, how is this achieved? Many of the game theoretic models are formally ergodic, and 
there are asymptotic results that show that only the good equilibria survive. However, 
studies using ABM have shown that such models may display ‘broken ergodicity’, in the 
sense that they are ergodic only on time scales that are long in comparison to human 
lifetimes, say, and may get stuck far from the good equilibria for very long times (Axtell 
and Epstein, 1999, Axtell, Epstein and Young, 2001, Epstein, 2001, Hales, 2002, 
Eisenbroich and Gilbert, 2014). 

Coalition formation has been studied by both economists and computer scientists 
using agents. The former tend to be concerned with constraints on the generation of 
realistic-looking groups (De Vany, 1993a, b, 1996a, b, c) while the latter are often 
concerned with the complexity of producing groups having certain properties (Shehory 
and Kraus, 1993, Klusch and Shehory, 1996a, b, Sandholm et al., 1998, Chalkiadakis, 
Markakis and Boutilier, 2007). The number of possible coalitions for any realistically 
sized population is given by the Bell numbers (Knuth, 2005: 61-86) and is so vast that 
models of coalition evolution are not plausible as mechanisms for the creation of 
anything like optimal groups of agents, since the number of coalitions that can be 
sampled is tiny. Yet optimal coalitions are the primary focus of the cooperative game 
theory literature (e.g., Ray and Vohra, 1999, Ray, 2007). Real-world coalitions formed 
via evolutionary mechanisms make the kinds of coalitions studied by ABM more realistic 
than optimal ones. 

Arthur introduced the so-called El Farol or ‘bar attendance’ problem (Arthur, 
1991, 1994) as a paradigm for inductive learning in contrast to rational behavior. In his 
model there is a population of agents all of whom have the same preference for attending 
a club that evening. If the club is either too crowded or too empty it is not fun for any of 
the attendees. Arthur demonstrated that with enough heterogeneity in forecast functions 
the population can evolve toward good solutions so that the bar has very nearly the right 
number of people attending each week. It is a paradigm for heterogeneous agents arriving 
at mixed strategy Nash equilibrium despite none of them trying to compute such a thing. 
This model has generated a large secondary literature (Bell and Sethares, 2001, Bell, 
Sethares and Bucklew, 2003) and in finance a simplified version has come to be known 
as the ‘minority game’ (e.g., Challet and Zhang, 1998, Jefferies, Hart and Johnson, 2001, 
Johnson, Jefferies and Hui, 2003). 

An important motivation for many game theoretic ABMs has been to relax 
rationality and other conventional specifications (Moss, 2001a), in the spirit of table 1. 
There are ABMs using game theory set-ups that add networks (Vega-Redondo, 2007), k-
level cognition (Latek, Kaminski and Axtell, 2009), and so on. Many agent researchers in 
computer science use game theoretic set-ups and seek optimal solutions for engineering 
or policy purposes rather than behavioral realism (Shoham and Layton-Brown, 2009, 
Tambe, 2011).34 

                                                                                                                                            
2006) and computer scientists (Rosenschein and Zlotkin, 1994, Walker and Wooldridge, 1995, Shoham and 
Tennenholtz, 1997, Ossowski, 1999). 
34 An emerging field in computer science known as algorithmic game theory (Nisan et al., 2007) focuses on 
computational issues. Similarly, computational social choice theory has grown up as a field within computer science 
(Brandt et al., 2016). Neither of these areas has close connections to ABM. 
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3. Industrial organization, firms, and organizational behavior 
There have been many applications of ABM to industrial organization, the theory 

of the firm, and organizations. Some of these models relax conventional specifications 
(e.g., rationality) yet recover conventional results. Others are able to rationalize large 
swaths of micro-data that are increasingly available. It is also the case that ABM has been 
broadly applied in the context of firm operations, from logistics to marketing and 
organizational performance. We briefly review these areas here. 

Standard oligopoly models use firms that rationally select prices and/or quantities 
in competitive environments. An early ABM in this area was Marks (1992) who used an 
evolutionary specification of behavior to breed better strategies.35 Kimbrough and co-
authors attempted to reproduce most of conventional oligopoly theory, e.g. Cournot and 
Bertrand competition, using simple agents via ABM (Kimbrough and Murphy, 2009, 
Haas, Kimbrough and van Dinther, 2013, Kimbrough and Murphy, 2013). These agents 
do not have deep internal models of how their local economies work. Instead they probe 
their economic environment for performance gradients and adjust their behavior 
accordingly, moving in the direction of higher profits. These simple models do a good job 
of reproducing most of the content of the rational theory and extend it in various ways. 

The economic theory of the firm as it grew up from Coase through Williamson 
has had important empirical dimensions but was never grounded in firm-level micro-data. 
Today there is ever-increasing availability of such data from national statistical agencies, 
making it possible to formulate and test theories relating many structural features of the 
economy, including distributions of firm sizes, productivities, ages, lifetimes, growth 
rates, financial characteristics, inter-firm networks, and geographical locations, among 
many others. Analytical theories have appeared that attempt to explain one or a few of 
these properties (e.g., Luttmer (2007, 2011, 2012), Arkolakis (2016)) but at this point 
there are many more patterns in these data that are unexplained and it is not clear how to 
make progress, mathematically. 
 Using ABM Axtell (2016, 2018) has created a model of firm formation and 
evolution that reproduces many of these data series, based on a model involving the job-
to-job flows of workers between firms. Specifically, for agents who value both the 
income derived from working and time spent in leisure, situating them in environments 
featuring some degree of increasing returns to effort leads to the spontaneous formation 
of teams of agents. As firms grow agents adjust their effort levels non-cooperatively, 
leading to reduced effort levels as teams grow large and monitoring is imperfect—a kind 
of social shirking. Over time, productive teams attract workers willing to contribute effort 
while unproductive teams do not, leading to an evolution of team sizes and productivities. 
Some teams fail while others thrive and there is constant flux of workers at the firm-level 
while at the level of the population of firms a steady-state number of firms arises, 
featuring skew distributions of sizes, productivities, ages, and so on. With suitable 
parameterization this ABM can be made to reproduce a great many of the gross 
regularities in the firm-level micro-data, and serves as an example of how ABMs can be 
employed to explain data in a way that representative agent models do not. 
 In particular, it is reasonably well-known that firm sizes follow a power law 
(Axtell, 2001b) having an exponent near unity, the so-called Zipf distribution, and while 
                                                
35 Technically, he used a genetic algorithm. 
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there are a variety of stochastic processes that lead to such distributions (e.g., Simon, 
1955), there are few analytical models having substantive economics that are capable of 
generating them (e.g., Lucas, 1978). Similarly for distributions of various firm-level 
productivities—labor productivity, total factor productivity, etc.—which are known to 
have heavy tails (Souma et al., 2009, Aoyama et al., 2010, Okubo and Tomiura, 2010) . 
Firm ages and lifetimes are also skew but less heavy-tailed than firm sizes and 
productivities. Empirically, young firms and small firms have a higher exit rates than 
older and larger firms. Such patterns arise naturally in this family of ABMs when workers 
who are unable to find better opportunities leave their current firms and form new firms. 
Many of these new firms do not last long as the founders may find better opportunities at 
more productive firms. This leads to a specific kind of skewness in model output that 
successfully reproduces the data—essentially, very young, small firms have higher exit 
rates. While the distinguished role of small firms in overall economic growth was 
highlighted by Birch (1981, 1987) a generation ago, more recent efforts to unpack firm 
size from firm age (Haltiwanger, Jarmin and Miranda, 2011, Dixon and Rollin, 2012) 
have uncovered a misplaced emphasis on size—which is highly correlated with age—
when it is actually young firms that serve as growth engines. Axtell’s ABM is able to 
reproduce many of the regularities in firm growth patterns by virtue of the endogenous 
firm formation and exit processes implicit in workers moving between firms in pursuit of 
higher welfare. Firm growth rate distributions are yet another area where a sizable 
number of patterns exist in the micro-data (e.g., Stanley et al., 1996, Perline, Axtell and 
Teitelbaum, 2006) that are not explained by extant analytical models of firm growth, but 
which the ABM is able to reproduce with significant verisimilitude. A wide variety of 
other firm-level micro-data is rationalized by this model and many distinct behavioral 
specifications are naturally explored, resulting in a family of models that offers an 
explanation of a large number of data series. 

There are several lessons from ABMs of this kind. First, the fact that at the agent 
level there is constant flux and transition—just as in the U.S. data where there are 
millions of Americans change jobs each month—yet a statistical steady-state is 
approached at the aggregate level, means that model solution concepts like Nash 
equilibria may not be empirically useful, especially for economies having a large number 
of people. Rather, models are needed, like ABMs, that permit agents to adjust and adapt 
their behavior in response to what is going on around them, but that yield statistical 
regularities at the aggregate level. A different way to say this is that economic dynamics, 
at least at the agent level, can be completely endogenous, without the need for aggregate 
shocks, in order to produce realistic dynamics. While external shocks are sometimes 
important—e.g., the oil embargos of the 1970s, SARS-COV-2/COVID-19—it is possible 
to create realistic economic fluctuations without them. Second, sensitivity analysis of this 
ABM demonstrates that agents that are too homogeneous or too rational do not end up 
producing teams that look at all like real firms. Agents who are similar end up a large 
number of small, similar-looking firms, unlike the vast heterogeneity present in the data, 
while agents who are hyper-rational, and are able to evaluate what is going on in the 
whole economy, for instance, and move to particularly successful, rapidly growing firms, 
can produce large-scale volatility and extreme fluctuations that do not resemble the 
dynamics present in the firm-level data. Third, matching the scale of a model to the data 
is important. Initial attempts to build ABMs relevant to firm-level data were done at 
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reduced scale, involving only tens or hundreds of thousands of agents (Axtell, 1999, 
2002), while the US economy has hundreds of millions of workers. Reduced-scale 
models achieved only partial success in explaining the data. Later versions of the model 
were made at full-scale, matching the number of workers in the US. The full-scale 
models match a much wider set of properties than the reduced scale models. Large scale 
is necessary for properties such as firm growth rates that are essentially fluctuations, and 
scale nonlinearly with the size of the economy being modeled. Using the full scale model 
it is possible to apply the same statistical tests to both the U.S. data and the model outputs 
and make direct comparisons. Furthermore, the character of fluctuations produced 
typically depend on the size of the system. This is particularly true when heavy-tailed 
phenomena are involved, which is certainly the situation with firm-level data. Small-scale 
models must have their output rescaled in order to be compared to data from larger real-
world economies. Often each different data series need to be rescaled in different ways. 
When the number of data series is large, as is the case for firm-level data, it can be 
difficult to work out rescalings for each. The advantage of working with a full scale 
model is that its output should have the same statistical characteristics as the real data, 
making comparisons much more direct (We have more to say about large-scale ABMs in 
section IV.B below.) 

Agent models of firm operations is a very active area of research, including work 
on supply chains (e.g., Lee, Padmanaabhan and Whang, 1997), marketing (e.g., Rand and 
Rust, 2011), customer behavior (e.g., Said, Bouron and Drogoul, 2002), diffusion (e.g., 
Garcia, 2005), e-commerce (e.g., Glushko, Tenenbaum and Meltzer, 1999), and 
manufacturing logistics (e.g., Leitao, 2009). A significant fraction of this literature spills 
over into management science and is too large to be succinctly summarized here. Among 
well-known ABMs is the supply chain model of (Parunak, Savit and Riolo, 1998), notable 
for contrasting ABM results with a more conventional equation-oriented model. They find 
that ABMs are more appropriate when supply chains have local, distributed information 
and are dominated by discrete decisions. 

The enormous literature describing product diffusion (Rogers, 1995, Valente, 
1995, 1996) has long had a bottom up perspective, while corresponding mathematical 
formalizations tend to be more aggregate (Bass, 1969). There is a growing ABM presence 
in this area that has been reviewed (Kiesling et al., 2012). Rahmandad and Sterman 
(2008) contrast agent models of diffusion with mathematical approaches. Much of the 
work on diffusion is closely related to models of opinion dynamics (e.g., Goldenberg, 
Libai and Muller, 2001, Deffaunt et al., 2002, Hegselman and Krause, 2002), which is 
itself an active area of research at present, especially vis-à-vis social media. Closely 
related is the application of ABM to marketing (Rand and Rust, 2011), another area of 
rapid growth, especially given the behavioral realism possible with agent models. Such 
models are capable of representing marketing programs in more detail than simple 
mathematical models, even giving guidance on things like product placement in stores 
when ABMs take shelf geometry and customer movement into account. 

Organization theory was an early area of application of ABM methodology and 
computational organization theory is increasingly agent-based, as evidenced by the edited 
volumes of Prietula, Carley and Gasser (1998) and Lomi and Larsen (2001) and the 
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survey of Carley (2002).37 This literature covers a wide range of topics, including 
information flow within organizations (e.g., email networks (Klimt and Yang, 2004, 
Keila and Skillicorn, 2005)), hierarchy and power relations, compensation, work effort 
and monitoring issues, learning curves, efficiency, and the trade-off between exploration 
and exploitation. For example, worker turnover has been investigated with ABM by Dal 
Forno and Merlone (2004), Phelan (2004) has studied promotion policies, and Harrison 
and Carroll (2006) simulate organizational culture and demography. Among their many 
findings are that rapid growth and high turnover can actually enhance the stability of 
organizational cultures through large influxes of new employees who are susceptible to 
socialization. 

4. Labor economics 
There has been considerable work studying labor markets using ABM, including 

Tesfatsion (1998, 2001, 2002, 2003), Fagiolo, Dosi and Gabriele (2004), Richiardi 
(2004), Neugart (2004), 2008) and others. The typical motivation for these studies is 
either to generate aggregate labor market performance measures from the bottom up, 
such as Beveridge curves and matching functions, or to relax one or more of the 
conventional assumptions in standard labor economics—such as homogeneous workers, 
uniform reservation wages, and rational decision-making—in the direction of more 
realism. Notable about several of these studies is the explicit focus on policy issues, such 
as the economic effects of the size and duration of unemployment payments. The 
expressiveness of ABM is a comparative advantage here since such policies often have 
features that are hard to represent mathematically and are more easily stated in computer 
code. 

The role of social networks for job referral has been studied for some time 
(Granovetter, 1973, 1995) and the effects of such networks on economic outcomes, via 
segregation, the production of inequality, and so on, has been investigated both 
analytically (Calvó-Armengol and Jackson, 2004, 2007, 2009) and with ABM (Tassier 
and Menczer, 2001, 2008). While idealized networks may facilitate analytical solutions, 
realistic networks usually mean turning to ABM as Jackson (2008: 406-7) has suggested: 

“[O]ne difficulty [when modeling network formation] is that complex networks 
and/or patterns of behavior can emerge from simple specifications, especially 
when even minimal heterogeneities (e.g., in geography, age, costs, or preferences) 
are introduced…[ABM] techniques can be used to analyze systems in which 
equilibrium or dynamics cannot be determined analytically. They are useful as 
tools to illustrate systems or for exploratory analyses that help in formulating 
hypotheses and conjectures. Such techniques are also useful in empirical analyses 
for generating distributions of behavior that emerge under a model, which can 
then be compared to or fitted to observed data. 

Real-world networks may have millions of nodes and/or edges and, in addition to 
conventional network science tools, ABM can be a useful methodology for understanding 
them. 

Longitudinal employer-employee matched data for whole countries have 
progressively become available. These data permit the construction of networks between 

                                                
37 An important but now dated statement of this research program is Carley and Prietula (1994). 
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firms formed by workers who follow employment opportunities from firm-to-firm. These 
have been termed labor flow networks (LFN) since they describe how workers move 
between firms. ABMs have been built to reproduce these networks (Guerrero and Axtell, 
2013) and to study how shocks to firms accrete into aggregate employment (Guerrero and 
López, 2015, Axtell, Guerrero and López, 2019). LFNs are an alternative to the aggregate 
matching function of standard labor economics, providing micro-foundations for wage 
dispersion and other empirical features of labor markets. Specifically, LFN topologies 
having Pareto-distributed degree distributions, as is the case empirically, cause 
disproportionately large changes in aggregate unemployment under high labor supply 
elasticity. 

5. Macroeconomics, money and policy 
Since the early days of ABM, researchers have been interested in building models 

relevant to macroeconomics. Allen and Carroll (2001),studied consumption behavior in a 
population of imitators and compared their results to standard buffer savings models. 
Bullard and Duffy (2001) modeled how agents learn about macro volatility. Howitt and 
Clower (2000) investigated the emergence of money in a model that featured many goods 
and stores selling those goods, with barter arrangements. They established properties that 
a commodity should possess in order to serve as money. An earlier ABM on the same 
topic is Marimon, McGrattan and Sargent (1990). 

These initial efforts were hampered by limited computing power. Then, some 
fifteen years ago there arose the idea of bringing high-performance computing to bear on 
macro using large-scale agent models. The EurACE model (Deissenberg, van der Hoog 
and Dawid, 2008, Cincotti, Raberto and Teglio, 2010) was the first example of this 
approach. It yielded a model featuring some ten thousand consumers and firms, 
generating a variety of macroeconomic phenomena. Eventually the model was made 
policy relevant and exercised to study policy alternatives (Dawid et al., 2012). 

At about the same time, and as the Financial Crisis began to unfold, ideas of 
‘emergent macro’ and ‘macro from the bottom up’ were invoked to study ‘financial 
fragility’. These models featured populations of consumers, employed in firms, who 
borrow from banks to operate their firms. The linkages between firms and banks can lead 
to credit crises and recessions. This literature includes Delli Gatti (2008, 2011). Given the 
success of ABM financial markets, the so-called CRISIS project proposed blending agent-
based finance and macro models in order to study the events surrounding the Crisis—
how it unfolded and how to ameliorate its effects. This effort combined macro and 
financial sector models in order to produce credible bottom up dynamics of lenders 
(banks), households, investors, regulators, and consumers. It produced several interesting 
ABMs, including high quite detailed models of banks, bankruptcy resolution, and so on 
(see Poledna and Thurner, (2016)). 

Over the last decade macroeconomic ABMs (MABMs) have made steady progress, 
both in the underlying economic and financial processes they represent as well as in their 
empirical grounding. An up to date review of this area is Dawid and Delli Gatti (2018), 
who compare the design, structure, and output of seven distinct families of MABMs: 

1. Ashraf, Gershman, and Howitt (2016, 2017); 
2. Delli Gatti et al. (2011) and Assenza, Delli Gatti and Grazzini (2015); 
3. Dawid et al. (2014), Dawid et al. (2019); 
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4. Cincotti, Raberto and Teglio (2010), Raberto, Teglio and Cincotti (2012) and 

Erlingsson et al. (2014); 
5. Seppecher (2012), Salle, Yildizoglu and Senegas (2013), Salle (2015), 

Seppecher and Salle (2015); 
6. Dosi et al. (2013), Dosi et al. (2018), Dosi et al. (2019), Dosi and Roventini 

(2019), Dosi, Roventini and Russo (2019); 
7. Wolf et al. (2013). 

Essentially all of these models include populations of households and firms, several 
include banks and financial sectors, and a few support multiple regions or countries. All 
of these models feature consumption goods sectors and most have capital goods as well. 
Productivity growth is often modeled, either through technological change or new 
vintages of capital goods. Prices adjust based on inventory and demand conditions. All of 
these models have explicit credit markets involving both firms and banks. Several of the 
models include stock markets with firms paying dividends to households. Each model 
includes policy-making through a central bank. Some models have governments that 
pursue fiscal measures. These MABMs are each calibrated in its own way, as empirical 
estimation of such models has been in its infancy until recently (see section III.H for a 
discussion of progress on ABM estimation). 

The outputs of these models are typically wide ranging and can usually be 
compared to macro data from real economies, both quantitatively and qualitatively. Each 
of these models yield several of the following: 

A. endogenous output fluctuations that resemble business cycles, possibly 
including sudden recessions and slow recoveries; 

B. output growth with gaps that display autocorrelation and volatility; 
C. mark-ups and price changes typical of real economies; 
D. realistic levels of interest rates; 
E. inflation and inflation volatility; 
F. unemployment rates and durations; 
G. firm market share persistence; 
H. productivity heterogeneity across firms; 
I. firm sizes that are heavy-tailed and heterogeneous firm growth rates; 
J. firm exit and job loss rates at levels typical of modern economies; 
K. Beveridge and Phillips curves and Okun’s law phenomena; 
L. a variety of series that are procyclical, including investment, output, 

employment, consumption, productivity measures, firm differences, inventory 
changes, inflation, and mortgages; 

M. several countercyclical series, including wages, unemployment, prices, mark-
ups, and bank deposits; 

N. investment more volatile that output with consumption less volatile; 
O. skew income and wealth distributions. 

Due in part to the richness of the output of these models, several have been used for 
policy analysis (Dawid and Delli Gatti, 2018: 120-134). 

More recently, Poledna, Miess and Hommes (2020) have created a MABM of a 
small open economy capable of generating economic forecasts that are directly 
comparable to VAR and DSGE models. Their model also features heterogeneous 
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households consisting of endogenously employed and unemployed workers. The firm and 
industry sectors are based on input-output tables with endogenous prices that are 
periodically adjusted. Firms may borrow and can go insolvent. Central bank and 
government entities are represented. Their model is parameterized for the Austrian 
economy. As a tool for forecasting it compares favorably to DGSE and AR models, 
including for conditional forecasts. 

Much work remains to be done with MABMs. As appetite among policy-makers 
for more realistic models grows alongside increased computing power, this area will 
continue to evolve. 

6. Environmental economics 
Many problems in natural resource and environmental economics involve features 

from the right column of table 1, such as spatial processes, networks, and disequilibrium 
dynamics. ABM has been widely applied in this area of economics. 

Common pool resource management was brought to prominence by Ostrom 
(Ostrom, 1990, 1994, 1999), who advocated ABM methods late in her life. The ability of 
groups of people to manage their own exploitation of scarce resources begs for realistic 
models. For renewable resources ABM has been used for some time (Antona et al., 1998, 
Rouchier et al., 2001). For fisheries a variety of ABMs have appeared (Bousquet, 
Cambier and Morand, 1994, Bousquet, 1996, Bastardie, Nielsen and Miethe, 2013, 
Bailey et al., 2019, Burgess et al., 2020, Carrella et al., 2020), some of which represent 
fish populations as IBMs. Older overviews of this literature include Bousquet and Le 
Page (2004) and Janssen (2002). 

The standard models of climate change economics (Nordhaus, 1993b, a) are built 
around older macroeconomic models, and include strong assumptions such as a single 
representative agent. So-called integrated assessment models (IAMs) of climate change, 
which are always computational in nature, were historically not agent-based 
(Dowlatabadi and Morgan, 1993b, a), but are increasingly becoming so. (Downing, Moss 
and Pahl-Wostl, 2001, Moss, Pahl-Wostl and Downing, 2001, Gerst et al., 2013, 
Lamperti et al., 2018). Large-scale models have yet to appear, the case for which is made 
by Farmer et al. (2015). Rai and Henry (2016) review ABMs of consumer energy choices. 

An interesting variant of ABM that has grown up largely within environmental 
applications is known as participatory modeling (Ramanath and Gilbert, 2004). In 
keeping with the bottom up spirit of ABM, when stakeholders can be engaged in the 
modeling process they can be given a role in the model and are then permitted to act in 
lieu of an artificial agent. This approach has found success in a variety of natural resource 
environments (Downing, Moss and Pahl-Wostl, 2001, Martin et al., 2004, Castella, Trung 
and Boissau, 2005, Siebenhüner and Barth, 2005).38 

                                                
38 Land use and cover change are important topics in agricultural economics and related areas and have proven fertile 
ground for ABM because they demand the representation of spatial processes. There is a large literature on such 
applications, summarized by Parker et al. (2003) and then by Matthews et al. (2007), which we do not summarize here. 
A closely related topic is markets for land. Because the value of land depends importantly on its spatial proximity to 
other economic goods and services, spatial models are again a key motivation for ABMs. There is a large and growing 
literature on this topic (Filatova, Parker and van der Veen, 2007, Filatova, 2009, Filatova, Parker and van der Veen, 
2009, Magliocca et al., 2011, Filatova et al., 2013). The usefulness of agents for agricultural economics was pointed 
out by Berger (2001) who also suggested that policy analysis could be readily accomplished using ABMs. 
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7. Political economy, development economics, public policy, and related 
areas 
Agent computing has been used to study a wide variety of topics in political 

economy, broadly construed, from the transition to agriculture (Bowles and Choi, 2013) 
to taxation (Mittone and Patelli, 2000), public choice (Wallick, 2012), public economics 
(Kollman, Miller and Page, 1997b), and regional economic issues (Zhang, 2003, Waters, 
2019).39 There are now several ABMs relevant to development economics, including 
models relevant to recent conflicts (e.g., Latek, Rizi and Geller, 2013). 

As mentioned above, models of taxation have long been the province of 
microsimulation. The fine level of detail in these models proved both a strength and a 
weakness. On one hand, detailed micro-data are necessary to make accurate assessments 
of changes in the tax code. On the other hand, households do not interact in conventional 
microsimulation models, and a very large number of parameters are needed to march the 
models forward in time. The data that would be needed to calibrate these models often 
does not exist. Therefore, there has been a slow but steady migration of tax models to 
ABM, both as a way to study interactive behaviors not easily studied with 
microsimulation (e.g., use of tax preparers), but also because many of the life behaviors 
that require parameters are more naturally represented in agent models (e.g., demographic 
events like births, marriage or divorce). It is also the case that agent models facilitate the 
representation of boundedly rational taxpayer behavior, important in models of 
compliance (Antunes et al., 2007, Korobow, Johnson and Axtell, 2007, Bloomquist, 
2010, Hokamp and Pickhardt, 2010). Models featuring social networks of taxpayers, with 
various kinds of information flows, are naturally studied with agents (Bloomquist, 2012, 
Andrei, Comer and Koehler, 2014). While such models make predictions for specific 
agents, the results are normally interpreted as more meaningful at the population level. 

For some time it has been noted by several researchers that the expressiveness of 
ABM combined with the methodology’s ability to interact with stakeholders (e.g., 
participatory modeling mentioned in the previous subsection) and communicate to 
decision-makers make it potentially very useful for policy (Lempert, 2002, Moss, 2002, 
Gulden, 2004). Against this perspective, Durlauf has argued that the complexity approach 
to economics “does not fundamentally affect policy evaluation” (Durlauf, 2012: 68). 

B. ABM in Finance 
One of the most active areas of ABM is in finance. From agent-based stock 

markets featuring software traders to banking regulation and financial crisis modeling, 
there now exists a large and growing literature.40 

1. Clustered volatility and fat tails 
The origin of changes in price is among the most fundamental questions in 

finance. As originally noted by Mandelbrot (1963), prices tend to move in “bursts”. There 

                                                
39 Older, non-agent-based computational models, having more of a numerical flavor, are also used in this area 
(Kollman, Miller and Page, 2003). 
40 For an excellent early overview of this literature see LeBaron (2006). The financial crisis stimulated several calls to 
expand work in this area (Buchanan, 2009, Farmer and Foley, 2009, Battiston et al., 2016). For an ABM model of 
currency crises see (Arifovic and Masson, 2004). 
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are times when prices are volatile and times when they are relatively stable, a 
phenomenon that is called clustered volatility. ABMs provide insight into the causes of 
clustered volatility, both yielding conceptual insight and providing better practical tools 
for forecasting volatility. 

In a rational expectations equilibrium (REE) agents fully process all available 
information and immediately incorporate it into prices, so that the only possible reason 
for prices to change is the arrival of new information. This has been used to justify the 
efficient markets hypothesis, which says that because prices fully reflect all available 
information it is not possible to make excess profits by processing publicly available 
information. If markets are efficient, then price changes are in one to one correspondence 
with new information, and the clustered volatility of prices merely reflects the clustered 
volatility of information arrival. 

To test this hypothesis, Cutler, Poterba and Summers (1989) studied the 100 
largest daily moves in the S&P 500 index between 1946 and 1987. They recorded the 
New York Times’ (NYT) explanation on the day after each move and made a subjective 
judgment as to whether the explanation could plausibly be called “real news”. Their 
results were striking: Only about a third of the largest price movements were associated 
with new information arriving from outside of the market. The other two thirds were not. 
For example, the largest daily price movement during this period occurred on October 19, 
1987, when prices dropped more than 20% in one day. If this indeed reflected a rational 
expectations equilibrium in an efficient market, it would suggest that the value of the 
U.S. economy decreased in a single day by an amount corresponding to roughly a decade 
of typical economic growth. Under REE one would expect news of profound importance. 
In contrast, the NYT explanation was “worry over dollar decline and rate deficit” and 
“Fear of US not supporting dollar”. Both express collective emotions rather than facts, 
and both are internal to the market. In contrast, the largest move that was classified as 
real news occurred on May 28, 1962, when the NYT reported “Kennedy forces rollback of 
steel price hike” (this was only the fifth largest move). Studies on finer timescales 
comparing large price movements to news feeds show an even smaller ratio of price 
movements given by news vs. those that occur without any news (Joulin et al., 2008). It 
seems that markets often “make their own news”. This is incompatible with rational 
expectations and efficient markets. 

The origins of clustered volatility were studied via an agent-based model that has 
come to be called the Santa Fe stock market model. Arthur et al. (1997) simulated a 
market where investors had a choice between investing in a stock or a bond. The stock 
paid dividends of variable size while the bond paid a fixed interest rate, which was lower 
on average. Each artificial trader had an “artificial brain”, which was based on a machine 
learning algorithm called a classifier system.41 Their artificial brains allowed them to 
form their own expectations and make decisions based on past experience. They had two 
sources of information to choose from. They could pay attention to fundamentals (the 
dividends paid by the stock). Alternatively, they could look at the recent behavior of 
prices and base their decisions on technical indicators, such as whether prices were 
                                                
41 In a classifier system each agent is given a set of rules, where each rule consists of an input condition and an output 
if that condition is met. Successful rules reproduce, albeit imperfectly, with modifications to the rules via random 
mutations and recombination, and unsuccessful rules are removed from the population, so that the system can learn 
over time. 
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trending. Or they could use a combination of the two, though since the computational 
resources and data available to each agent were finite, their ability to perform each task 
was limited accordingly. 

It was also possible to over-ride the algorithms of the agents and give them beliefs 
corresponding to a perfect understanding of the dividend process. When this was done the 
market obeyed the rational expectations equilibrium; the stock price stayed near the 
correct valuation and price fluctuations closely tracked the random draws of the dividend 
process. However, when the artificial traders used their machine learning algorithms the 
model showed realistic looking clustered volatility. This was true even though the 
autocorrelations of price returns were minimal, indicating a market that was efficient with 
respect to linear time series prediction. Arthur et al. (1997) showed that this was caused 
by fluctuations in the market ecology. That is, traders tended to specialize as either trend 
followers or fundamentalists. When conditions favored one over the other, the number of 
traders and the capital they deployed tended to shift between the two strategies. When 
trend followers became more active, destabilizing the market, volatility tended to be 
higher. Similar results for a simpler agent-based model setting were independently 
obtained by Brock and Hommes (1997, 1998). 

These early ABMs matched the data only in a qualitative sense, but later ABMs 
were able to quantitatively reproduce the empirical statistical properties of real markets 
(Chiarella et al., 2012, Chiarella, He and Zwinkels, 2014). This included matching the 
autocorrelation of price returns, the autocorrelation of volatility and the marginal 
distribution of price changes.42 

Thurner, Farmer and Geanakoplos (2012) showed that leverage can also cause 
clustered volatility. In an ABM with only fundamentalists, when leverage is banned there 
is no clustered volatility; however it appears as soon as leverage is allowed. When 
leverage is used at realistic levels there is a good empirical match to the tails of price 
distributions. Poledna et al. (2014) extended this model and showed that it provides a 
much better empirical match to the decay of volatility following spikes than standard 
GARCH models (Engle, 2001). Poledna et al. (2014) also compared several different 
policies for regulating leverage, and showed that systematic effects lead to 
counterintuitive results. For example, in the high leverage domain it is better to use fixed 
leverage than to use variable leverage based on market conditions, such as Value at Risk 
(which was recommended under Basel II). 

Agent-based models can also be used to forecast volatility. For example, the 
parameters of the Franke and Westerhoff (2012) model, which is similar in spirit to the 
Santa Fe and Brock and Hommes models, can be matched to empirical data, and provides 
a substantially better fit than standard GARCH volatility models (Barde, 2016). 

Overall, ABMs have played a useful role in showing how bounded rationality 
results in a realistic empirical match to actual markets with respect to the properties of 
both price changes and volatility. As such, they stand in sharp contrast to the lack of 
satisfactory explanations of these phenomena in analytical models. With improved 

                                                
42 These models include Lux and co-authors (1998, 1999, 2000), Levy, Levy and Solomon (2000), LeBaron (2001a, b, 
c, d, 2002), Farmer and Joshi (2002) and Cont and co-workers (Ghoulmie, Cont and Nadal, 2005, Cont, 2006). 
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estimation methods, has led to useful tools for practical problems such as volatility 
forecasting.43 

2. Application of ABMs to NASDAQ decimalization 
These early successes with financial market ABMs led to their practical use in 

predicting the consequences of regulatory changes. At the end of the twentieth century 
the Securities and Exchange Commission (SEC) ordered the NASDAQ market to move 
from trading in terms of eighths and sixteenths of a dollar to pennies, a change that was 
called “decimalization”. The NASDAQ had just been sued with accusations of collusion 
and its management was keen to not jeopardize market performance with regulatory 
changes. It therefore commissioned a high-fidelity ABM of its market, which was 
calibrated using its own proprietary data. This included many institutional details that had 
not previously been built into agent-based financial markets. The resulting model of the 
‘Small Order Execution System’ (SOES) faithfully rendered the protocols for dealing 
with the diverse types of orders that were used. Over the better part of a year an ABM of 
the NASDAQ was created and its performance was calibrated to actual market behavior. 
(Darley et al., 2001). It was an evolutionary model and made several predictions as to 
how decimalization would affect market function. Most of the model’s predictions were 
subsequently borne out after decimalization took effect (Darley and Outkin, 2007). This 
use of ABM to address the effects of alternative regulations has since been duplicated in 
evaluations of alternative circuit breakers for financial markets (Yeh and Yang, 2010). 

3. The square root law of market impact and ABM 
In the last decade there has been a proliferation of financial market ABMs for 

understanding continuous double auctions as they are actually used in contemporary 
financial markets. An application of particular interest has been to explain empirical 
regularities of financial markets. Perhaps the most striking example is the square root law 
of market impact, whose explanation sheds new light on the relationship between supply 
and demand. The story of how this came to be understood provides a good example of 
the usefulness of making a series of ABMs to understand a problem, ranging from simple 
to more realistic. It also shows how ABMs can be used to help develop better theoretical 
models. 

Market impact is the relationship between the initiation of new trades and changes 
in prices. A new order to buy that results in an immediate trade tends to be associated 
with an increase in price, and a new order to sell tends to be associated with a decrease in 
price. Under normal conditions, the average change in price for a buy order is well 
approximated by a square root function of the form 

∆𝑝 = 𝐾𝜎
𝑄
𝑉

! !

 

where ∆𝑝 is the price change, Q is the size of the order, V is the trading volume, 𝜎 is the 
volatility, and K is a constant of order one, that varies from market to market. Sell orders 
                                                
43 ABMs of more specialized markets have also appeared, such as those of Arifovic and co-workers who modeled 
foreign exchange markets using agents who learn via genetic algorithms (Arifovic, 1996, 2001). See also work on flash 
crashes (Paddrik et al., 2012), high-frequency trading (Leal et al., 2016) and transaction taxes (Fricke and Lux, 2015). 
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follow the same relationship, but with a negative sign. The volatility and volume are 
measured using the same timescale. The price change, ∆𝑝, can have both a temporary and 
permanent component. Due to the fact that this relationship is noisy and is an average 
over many trades, it is difficult to measure the permanent component. Nonetheless, on 
time scales of up to a day or so, this relationship has very strong empirical support.44 
 The square root law is surprising for many reasons. If excess demand is a smooth 
function, then based on an expansion in a Taylor series one would expect market impact 
to be linear. In contrast, the square root function has an infinite slope at the origin, which 
means that very small trades have a surprisingly large effect on prices, and similarly, 
large trades have a surprisingly small effect. This means that one cannot add the impact 
of successive orders together. One would have naively thought that market impact should 
depend on the market capitalization of the asset, but this does is not the case – instead, it 
depends on trading volume, which does not necessarily vary proportionally to market 
cap. Yet another surprising feature is that there is no dependence on time – an order can 
be executed quickly or slowly, yet this doesn’t matter.45 Finally, this is surprising because 
this relationship is universal, in the sense that under orderly market conditions this 
functional form provides a good approximation in many different types of markets, 
including equities, foreign exchange, futures, options, commodities, and even bitcoin. 
 Theoretical explanations of the square root law are based on markets that operate 
via the continuous double auction. Such markets have an order book containing pre-
existing orders. When a new order is submitted, if it crosses with the best price in the 
order book, there is an immediate transaction at the limit price of the pre-existing 
order(s); if not, the new order accumulates in the order book. Existing orders in the order 
book may also be cancelled at any time.46 
 The square root law corresponds to a situation in which the volume of orders at a 
given price increases linearly as one moves away from the current best price. To see why, 
assume prices and quantities are continuous and consider a new buy order of size Q. If 
pre-existing limit orders have density 𝜌 𝑝  then the new price, p + ∆𝑝, to which the new 
order will penetrate the order book satisfies the condition 

𝜌 𝑥 𝑑𝑥
!!∆!

!
= 𝑄. 

If 𝜌 𝑝 ∝ 𝑝 then market impact follows a square root law. 
 Early models of the continuous double auction assumed that orders are submitted 
and cancelled at random (with submission at random prices and random times).47 A 
combination of models based on simple ABMs, together with the application of 

                                                
44 Some deviations have been observed but these are small and may be due to measurement problem in aggregating 
orders; see Bouchaud et al. (2018) for a summary of the empirical evidence. 
45 The independence of time is probably due to the fact that market participants understand that they cannot execute 
orders too quickly, and thus never attempt to do so. Nonetheless, there is still a wide range in the speed of execution 
and there is little or no dependence on market impact. 
46 There are many possible rules for determining which orders are executed and at what price. A common specification 
is price-time priority, meaning that transactions occur with the oldest pre-existing limit order with the best price. 
47 For example, Cohen, Conroy and Maier (1985), Domowitz and Wang (1994), and Bak, Paczuski and Shubik (1997). 
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techniques from statistical mechanics made it clear that this does not generally result in a 
linear order density, 𝜌 𝑝 , and thus random order submission cannot explain the square 
root law (Smith et al., 2003). Furthermore, the simple ABM used in this model 
demonstrated that the resulting price diffusion process for random order submission does 
not follow normal diffusion; instead, its variance grows more slowly than the square root 
of time. This implies that prices are mean reverting, i.e. that upward price movements 
tend to be followed by downward price movements, creating the opportunity for arbitrage 
using a very simple strategy. 
 The situation is further complicated by the fact that market participants do not 
place large orders all at once. Instead, they engage in order splitting, breaking large 
orders into small pieces and submitting them incrementally. (Large funds sometimes split 
orders over timescales that span months.) Thus, only a small fraction of the actual supply 
and demand exists in the limit order book at any given time. To properly understand 
market impact it becomes necessary to think in terms of a virtual order book, which 
contains not only the limit orders that are currently sitting the book, but also the orders 
that participants intend to place at a later time. 
 Donier et al. (2015) showed that a linear virtual order book profile is a necessary 
condition for normal diffusion. They and their collaborators constructed more 
complicated ABMs with agents who use more sophisticated order placement strategies 
and demonstrated that these lead to linear order book profiles and market impact 
functions that follow the square root law (see Bouchaud et al. 2015). This makes it clear 
that the square root law can be understood in terms of a combination of the dynamic 
properties of the continuous double auction and the fact that market participants eliminate 
arbitrage opportunities. 

4. Systemic risk modeling using ABMs 
 Systemic risk in financial markets is one of the areas where ABMs have made 
important conceptual contributions, and where the state of the art is getting close to 
concrete empirical applications. This field also illustrates the close connection between 
ABMs and network models. Systemic risk occurs when the decisions of individuals, 
which might be prudent if considered in isolation, combine to create risks at the level of 
the whole system that may be qualitatively different from the simple combination of their 
individual risks. By its very nature systemic risk is an emergent phenomenon that comes 
about due to the nonlinear interaction of individual agents, making it natural to think of it 
as a complex system and study it using agent-based modeling. 
 The Great Financial Crisis of 2008 dramatically raised our awareness of systemic 
risk. The seminal papers of Nier et al. (2007) and Gai and Kapadia (2010) imported ideas 
from network theory and epidemiology, showing how interbank lending leads to financial 
contagion: If a given bank fails, it both defaults on its loan obligations and stops lending 
to other banks. Using very simple models, they showed how this can cause other banks to 
fail, setting off avalanches of cascading failures that can dramatically amplify shocks to 
the financial system. These papers triggered a large body of work investigating the 
circumstances under which such failures are likely to occur, as well as generalizations to 
include other channels of contagion. Perhaps the most important other channel of 
contagion is overlapping portfolio risk: If institutions A and B hold the same asset, if A 
comes under stress and sells the asset, this drives its price down, depressing B’s values 
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and causing it to sell, further depressing prices, and so on. Analysis in terms of simple 
ABMs led to counter-intuitive conclusions. While diversification is good for individual 
institutions in the absence of contagion, if many institutions diversify into the same assets 
so that they become overcrowded, the resulting nonlinear feedback can cause substantial 
systemic risk, making diversification detrimental. The models that have been used to 
study this phenomenon extend network models by adding the effect of sales and defaults 
on prices and balance sheets in a dynamic context. For a review see Aymanns et al. 
(2018). In related work, Lux (2015) investigated the emergence of a core-periphery 
network structure among banks. 
 Leverage cycles are another important example of systemic risk where ABM has 
added insight. Leverage refers to buying assets with borrowed funds. If many investors 
borrow they may inflate the price of an asset, while external triggers may force them to 
sell in unison, causing a crash. The idea of a leverage cycle was first articulated by 
Minsky (1982, 1986, 1992) and first studied using an equilibrium model by Geanakoplos 
(Fostel and Geanakoplos, 2008, Geanakoplos, 2010). As already mentioned, Thurner, 
Farmer and Geanakoplos (2012) constructed an ABM that showed how leverage causes 
clustered volatility and heavy tails in price changes and causes crashes in a distribution of 
different sizes. This provides a good example of the complementary use of equilibrium 
and ABM models. 
 In a simple ABM, Aymanns et al. (2016) showed how the use of a standard risk 
management protocol called Value at Risk (VaR) can give rise to an endogenous leverage 
cycle. In their model there are two representative agents, an investment bank who uses 
leverage and a value investor who does not. There are also two assets, a risky asset and a 
riskless asset. Under Value at Risk investors adjust their leverage based on their forecast 
for volatility – when the volatility forecast is high they decrease leverage, and vice versa. 
This model assumes simple behavioral rules: Value investors buy the risky asset when it 
is underpriced, and investment banks buy or sell based on changes in VaR. During 
periods where volatility is low, the investment bank steadily increases its leverage by 
buying more of the risky asset, driving its price up. Eventually the leverage becomes so 
high that the dynamics become unstable: A small drop in price causes the investment 
bank to sell, which amplifies the price decline, causing more selling, and so on, causing a 
large crash. The cycle then repeats itself, as shown in figure 3. 

<Figure 3 about here> 
One of the remarkable results of this model is that the leverage cycle is endogenous–there 
is a cycle even in the absence of any external noise. This is due to the fact that the 
dynamics are chaotic, meaning that small perturbations are amplified exponentially 
through time. The model is simple enough to be calibrated using a priori values for its 
parameters, and gives rise to a cycle with a period of roughly ten years, providing a 
reasonable match to the run-up to the Crisis of 2008. Note that as parameters are varied, 
such as the relative size of the investment bank and the aggressiveness of its use of 
leverage, the leverage cycle suddenly appears at full amplitude, so the presence or 
absence of such a cycle depends sensitively on parameters. A study of alternative policies 
indicates how the leverage cycle can be eliminated or damped by making leverage less 
responsive to volatility. A key feature of this model is that the existence of cycles 
depends on agents being boundedly rational. 
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Another good example where ABMs have been used to explore alternative 
policies is given by Poledna and Thurner (2016). They propose taxing transactions based 
on their marginal increase in systemic risk and test their policy using an ABM that 
emerged from the CRISIS project. The imposition of the tax causes a self-organized 
restructuring of the financial network that almost eliminates systemic risk, without any 
side effects. This is in contrast to the widely proposed unconditional transaction tax, also 
called the Tobin tax, which has little or no effect in damping systemic risk while causing 
a substantial decrease in market liquidity. 

At present ABMs for systemic risk are in the process of moving from qualitative 
models, such as those discussed above, to quantitative models that can be used to test 
policies and yield good numerical values for their parameters. The European Central 
Bank and the Bank of England, for example, have created ABMs that can explicitly 
simulate the behavior of all systemically important European financial institutions (Covi, 
Montagna and Torri, 2019, Farmer et al., 2020). These models have been designed to 
take advantage of the fact that central banks have detailed access to the balance sheets of 
key institutions, which can be used to initialize such models. This offers the potential to 
dramatically improve the accuracy of financial stress tests so that they properly take into 
account systemic risks as well as individual risks.  

5. ABMs of housing markets 
There is now a substantial literature of agent-based models of housing markets 

(e.g., Gilbert, Hawksworth and Swinney, 2009, Erlingsson et al., 2014, Kouwenberg and 
Zwinkels, 2015, Magliocca, McConnell and Walls, 2015, Ge, 2017). Together with Peter 
Howitt, John Geanakoplos, and a number of our students we have built such a model for 
the housing market bubble in the Washington, D.C. metro area c. 2000-2010 
(Geanakoplos et al., 2012). This model uses administratively complete data on housing 
stock from county records, data on mortgages from CoreLogic, data on households from 
various sources, and attempts to match the universe of real estate transactions during this 
period with data acquired from the local Multiple Listing Service (MLS). This ABM is 
somewhat unusual insofar as it can be run, in principle, at 1-to-1 scale with the actual 
regional economy under study. Giving each household intelligible rules of behavior for 
home-buying and selling, applying for a mortgage, paying taxes, refinancing, and so on, 
we have found that it is possible to closely calibrate the model to the actual events, 
matching a variety of time series both qualitatively and quantitatively, as shown in figure 
4. In addition to the overall price bubble, we have been able to do a reasonable job on the 
inventories of homes for sale, original listing versus actual sale price, days-on-market, 
loan-to-value of new mortgages, and so on. All of these quantities changed structurally 
over the course of the bubble, with inventories and days-on-market shrinking during the 
price run-up and then greatly expanding as the bubble burst. There are other aggregate 
variables that our model was not able to reproduce closely, such as the overall home 
ownership rate. This was almost surely due to having very limited data on the rental 
market. A model based on ours for the London real estate market was developed in a 
collaboration between researchers at Oxford and the Bank of England; results from this 
model were presented to the UK Financial Policy Committee in consideration of changes 
in lending requirements (Baptista et al., 2017, Carro et al., 2022). Subsequently, models 



Agent-Based Modeling in Economics and Finance: Past, Present, and Future 

32 

of this type have been developed for Sydney, Australia (Glavatskiy et al., 2021), Italy 
(Catapano et al., 2021), and Hungary (Mérö et al., 2022) . 

<Figure 4 about here> 

6. Theoretical frameworks for ABM 
Agent-based modeling is in a sense a departure from theory. In fact ABMs can be 

very useful auxiliary tools for developing theories, including those based on methods that 
are quite different from those traditionally used in economics. As already mentioned, 
work in finance provides several examples where techniques from statistical mechanics 
have been used to interpret and explain ABM simulations (see e.g. Smith et al. (2003) and 
Donier et al. (2015)). 

Another useful theoretical framework comes from ecology. Trading strategies in 
financial markets are highly specialized and fall into distinct types. Because trading 
influences prices and vice versa, trading strategies implicitly interact with each other, and 
profitable trading strategies can be viewed as “feeding on” other strategies. As shown by 
(Farmer, 2002) this can be used to interpret the results of ABMs, and can be used to 
understand how different types of trading strategies influence each other and how they 
give rise to excess volatility depending on market conditions. This provides a way to 
understand how the introduction of new strategies influences the market, and to 
understand the effect of overcrowding. Market ecology provides a useful framework for 
going beyond traditional theories based on market efficiency and equilibrium (see also Lo 
(2004), Hens and Schenk-Hoppé (2005), Evstigneev, Hens and Schenk-Hoppé (2006)) 
and may explain market malfunction (Scholl, Calinescu and Farmer, 2021). 

Despite the many accomplishments of ABM in finance, much work remains to be 
done. To date, almost all ABMs involve one risky and one riskless asset, with work on 
multi-asset markets in its infancy (e.g., Oldham, 2017). ABMs have yet to be developed 
that tackle issues such as crowded trades (e.g., Khandani and Lo, 2011). 

C. ABM in Related Fields 
There has been systematic use of ABM in quantitative branches of other social 

sciences. An overview of the span of agent computing across the social sciences is Berry, 
Kiel and Elliott (2002), although somewhat dated now. ABM methodology is an integral 
part of the emerging field of computational social science (Chen et al., 2014), along with 
data-intensive methodologies like machine learning (Lazer et al., 2009, Watts, 2013). 
Here we review important ABM work in several disciplines, though we are brief due to 
the availability of recent disciplinary-specific surveys. 

Within political science early use of CA includes models of international relations 
(Cusack and Stoll, 1990). Work of Axelrod is very much in the ABM tradition (Axelrod, 
1995, 1997) while that of Cederman has more of a CA flavor insofar as it describes the 
behavior of countries, each represented as an agent, on landscapes (Cederman, 1997, 
2001b, 2002, 2003). A dated but useful overview of ABM in political science is 
Cederman (2001a). An overview of computational methods in politics and adjacent social 
sciences, less focused on ABM, is de Marchi (2005). 

The behavior of political parties as they seek to attract voters has been studied at 
book length using ABM by Laver and Sergenti (2011); the emergence of parties by 
Schreiber (2014); older work includes Kollman, Miller and Page (1992). An interesting 
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contrast between analytical models and ABM is that the latter typically feature perpetual 
adaptation and adjustment by agents, not equilibrium. There has been a variety of work 
on voting systems, redistricting, gerrymandering, and so on using ABM (Kollman, Miller 
and Page, 1997a, Bendor et al., 2011). 

In sociology good overviews of the use of ABM are Squazzoni (2012) and Bruch 
and Atwell (2015), the latter being more empirically focused. Some have called for 
unifying the discipline with ABM (Gintis and Helbing, 2013). An older review is Macy 
and Willer (2002). Methodological advocacy for so-called ‘analytical sociology’ 
(Hedstrom and Swedberg, 1998, Hedstrom, 2005, Manzo, 2014) is very supportive of 
ABM. Collective action has been studied with ABM (Macy and Castelfranchi, 1998, Macy 
and Flache, 2002). Biggs looked at 19th C strikes in Chicago as propagating between 
factories like a forest fire (Biggs, 2005, Andrews and Biggs, 2006). Agent learning across 
multiple games through spillovers has been interpreted as a kind of emergent cultural 
behavior by Bednar, Page and co-authors (2007, 2010, 2012). 

Agent-based demography is an active area of research (Billari and Prskawetz, 
2003). Local norms of fertility exist and have been modeled with ABM (Kohler, 2001) 
along with the role of local social interactions generally (Fürnkranz-Prskawetz, 2010). 

ABM is an active area of research in geography; see Heppenstall et al. (2012) for 
an overview and Crooks et al. (2019) for a more recent and comprehensive survey of 
applications. The complex systems perspective on urban dynamics (Batty, 2005, White, 
Engelen and Uljee, 2015) uses both ABM and CA approaches. 

Within anthropology and archaeology there are a number of researchers using 
ABM to simulate societies by modeling individual behaviors; see Kuznar (2006) for an 
overview. These models can be quite data intensive, often with environmental and 
archaeological data extending over hundreds or thousands of years. Early examples 
include (Lansing, 1991) , Kohler and Gumerman (2000), and Axtell et al. (2002). A more 
recent survey is Cegielski and Rogers (2016). Broadly speaking, ABMs in these areas 
attempt to reproduce historical trajectories of populations based on physical and cultural 
records, representing agricultural practices, hunting and gathering activities, tool-making 
behaviors, mating rules, and so on. When good data are available it is often possible to 
create high fidelity reproductions of societal trajectories. 

III. Current ABM Practice 
The number of researchers who employ agent computing in their work has grown 

exponentially over the past decade. Today thousands of papers per year are published 
annually across the ABM, MAS, and IBM communities with no sign that growth is 
tapering off.48 Indeed, as software for creating agent models matures, as researchers 
become more computer-savvy, and as hardware capabilities expand, it has become easier 
to build and experiment with agent models. Here we will look at the contemporary 
literature on agents in economics and finance and describe the main features 
                                                
48 The penetration of ABM into the economics, finance, and the social sciences today looks a lot like the diffusion of 
game theoretic ideas into these fields over the past 70 years—initial appearance, followed by a decade or more of low 
adoption, then an acceleration leading to take off and exponential growth. Experimental and behavioral economics have 
gone through their own explosive growth in between the rise of game theory and the emergence of ABM, as discussed 
in detail in section IV below. Interestingly, bibliometric analyses of these distinct communities suggest that there is 
very little overlap between them (Niazi and Hussain, 2011) while some have called for more (Wellman, 2015). 
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characterizing the work, focusing in particular on the ways in which agents may be able 
to enrich analytical and empirical research in economics and finance. 

A. Heterogeneous Agents 
The notion of using a representative entity in economic models is ostensibly due 

to Marshall (1920) who invoked the ‘representative firm’ as an analytical expedient. 
There is a large literature pointing out the limitations of representative agent models, e.g., 
Kirman (1992). Although representative agent models dominated economics through 
much of the twentieth century, incorporating agent heterogeneity is an important topic in 
macroeconomics today (e.g., Guvenen, 2011). 

The ability to move away from representative agents is an important advantage of 
ABM, and there has been an emphasis on this from the beginning of the field.49 In 
traditional DSGE models it is necessary to write down and solve first order conditions for 
the agents in the model. As a result, incorporating heterogeneity requires choosing a 
functional form, which usually assumes a distribution over an infinite population of 
agents. For ABM there are no such restrictions: One can have any number of agents, and 
there is generally no need to assume that their heterogeneity matches any particular 
parameterized form. 

Heterogeneity can be both exogenous and endogenous. With ABMs the many 
dimensions of exogenous population heterogeneity can be represented to any degree 
justified by data. Software for creating synthetic populations grounded in data has begun 
to appear (Adiga et al., 2015). This can be used to provide an appropriate initial 
condition; once this is done, the action of the model will usually generate further 
heterogeneity endogenously. For example, income inequality may be imposed as an 
initial condition, and as the economy operates it may exaggerate or diminish inequality. 

Indeed, early work with ABMs often focused on simple models capable of 
generating skewed income or wealth distributions (Epstein and Axtell, 1996, Hommes, 
2002), some of this work falling into the category of econophysics when agents have 
particle-like characteristics and their fortunes follow simple stochastic processes (Levy, 
Levy and Solomon, 2000, Chatterjee, Yarlagadda and Chakrabarti, 2005, Yakovenko and 
Rosser, 2009). More recently there has grown up a literature that uses ABM to study the 
amplification of inequality in richer economic settings. The role of social networks in 
referral hiring is well-known and how such networks can lead to stratification and wage 
inequality has been investigated using ABM (Gemkow and Neugart, 2011, Dawid and 
Gemkow, 2014). Effects of labor market reforms on income inequality have been looked 
at with a heterogeneous agent ABM by Dosi et al. (2018). The role of consumer credit 
and other kinds of leverage have been studied (Russo, Riccetti and Gallegati, 2016), 
especially in the context of the Financial Crisis of 2008-9 (Cardaci, 2018, Papadopoulos, 
2019). The role of technology in exacerbating inequality through skill differentials has 
been an active area of ABM research recently (Carvalho and Di Guilmi, 2020, Mellacher 
and Scheuer, 2021, Terranova and Turco, 2022). Also appearing recently are multi-
country ABMs that attempt to reproduce empirically-observed divergences in growth 

                                                
49 Volume IV in the Handbook of Computational Economics series (edited by Hommes and LeBaron (2018)) focuses 
on heterogeneous agents and is a good source for work in this area. 
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rates (Dawid, Harting and Neugart, 2018, Dosi, Roventini and Russo, 2019) and balance 
of payments dynamics within a currency union (Cardaci and Saraceno, 2019). 

A number of heterogeneous agent ABMs explore gender inequalities (Grow and 
Van Bavel, 2015, Bullinaria, 2018). Unequal access to skills and jobs through social and 
spatial networks has been examined with ABMs featuring heterogeneous agents 
(Cardona, 2014, Antinyan, Horváth and Jia, 2019, Tomasiello, Giannotti and Feitosa, 
2020). The role of segregation and income inequality in access to food has been 
examined using ABMs (Auchincloss et al., 2011, Blok et al., 2015). Cochran and 
O'Connor (2019) analyze the emergence of inequitable norms and conventions in quite 
general settings. 

B. Limited Information, Bounded Rationality 
Another very common motivation for ABMs is the desire by researchers to move 

beyond rational agents. For many years rationality specifications have been under 
widespread revision from behavioral economics (1978a, b, Kahneman and Tversky, 
1979, Tversky and Kahneman, 1981, Slovic, Fischoff and Lichtenstein, 1982, Tversky 
and Kahneman, 1986, 1997a, b, c, d, Gigerenzer, Todd and ABCResearchGroup, 1999, 
Gigerenzer, 2000, Gigerenzer and Selten, 2001). However, rationality persists as the 
default in much of economic theory, presumably largely for reasons of analytical 
tractability. (Experimental results on how people really behave typically do not have 
simple mathematical structure (Simon, 1998)). Because ABMs do not face this same 
constraint, it is usually straightforward to incorporate behavioral specifications directly 
into computational models. 

In fact, the tables are turned for ABM – rationality is typically difficult to 
incorporate in complicated environments. Computer scientists working with MAS have 
investigated this problem in some detail (Sandholm, 1999, Shoham and Layton-Brown, 
2009, Parkes and Wellman, 2015). As a practical matter, full-blown rationality is often 
very difficult to implement in agent models, due to computational intractability 
(Papadimitriou and Yannakakis, 1994, Daskalakis, Goldberg and Papadimitriou, 2006, 
2009). At the aggregate level the computational job of a Walrasian auctioneer or a 
Hurwiczian mechanism designer is provably among the hardest problems in all of 
computer science (Hirsch, Papadimitriou and Vavasis, 1989, Papadimitriou, 1994, 
Conitzer and Sandholm, 2002). For a review of the complexity of computing economic 
equilibria see Roughgarden (2010).50  

Agent behaviors based on bounded rationality, in contrast, tend to be use simple 
rules and local information, and so usually require very few computational resources. 
Thus for ABM bounded rationality is motivated by convenience as well as empirical 
realism. While rationality makes analytical models easier to work with than behavioral 
alternatives, the reverse seems to be true for ABM. 

A further motivation for ABMs lies in their ability to match the economic 
processes of a real economy. Real economies are decentralized in deep and important 
ways (Hayek, 1945, 1964), making information not just diffuse but also tacit (Polanyi, 
1948). There are wide swaths of knowledge having to do with production, distribution, 

                                                
50 A related problem with rationality has to do with the difficulty of predicting opponent behavior (Foster and Young, 
2001), although if playing anonymously in a large population the problem is easier (Kearns and Mansour, 2002). 
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pricing, and so on, that are not available to most agents. This kind of dispersed 
information is hard to represent analytically in a satisfactory way. In a typical ABM 
agents glean information from some combination of their local environment and gross 
aggregate data. They make decisions on the basis of dynamic, idiosyncratic information 
that constitutes their knowledge. Under what conditions does it make sense to acquire 
more knowledge, or to jettison old information in pursuit of better performance or 
outcomes? These questions can be addressed with ABMs (e.g., Nissen and Levitt, 2004). 

Sargent (1999) argued that there is a danger of getting lost in the ‘wilderness of 
bounded rationality’. What we have today in the ABM literature is a spectrum of 
approaches to agent sophistication, involving different forms of bounded rationality. The 
types of boundedly rational agents that are commonly employed in ABMs are briefly 
described next, ranging from simple to sophisticated.51 

1. Simple (myopic/reactive/adaptive) agents 
More than 50 years ago Becker (1962) demonstrated that randomly behaving 

buyers could create downward sloping demand curves. While completely random 
behavior might be an interesting lower bound, later work in this tradition has focused on 
simple agents who behave randomly in some sense but who are purposive, i.e., they have 
some facility for judging the welfare consequences of their actions and modifying their 
behavior accordingly. Such adaptive agents typically do not have detailed internal models 
of their environment. Rather, they are myopic and are commonly referred to as reactive 
agents in the MAS computer science literature (Weiss, 1999). In economics and finance 
such agents are often called ‘zero-intelligence’ (ZI) agents (Gode and Sunder, 1993, 
1997), although this name can be a source of confusion since it suggests behavior that is 
completely random, which is not typically what ZI agents do. For instance, in simple 
market environments ZI sellers will try to find buyers in order to cover the cost of the 
goods they are selling, while ZI buyers will not pay more for a good than they believe it 
is worth. But the determination of exchange prices between the buyer bid and the seller 
ask is often modeled as being random in some sense.  

In many cases simple adaptive agents can produce high performance, particularly 
in the vicinity of an equilibrium (Lucas, 1986), making their study relevant to more 
traditional rational solutions. However, it is also known that there are a variety of 
contexts in which very simple agents may not perform well. For example ZI agents do not 
do well when supply and demand curves have unusual shapes, although rather slight 
modifications to their behavioral specification can produce much better performance, e.g. 
zero-intelligence plus (ZIP) traders (Cliff and Bruten, 1997a, b). ZI agents are closely 
related to ‘probe and adjust’ agents (Kimbrough and Murphy, 2009, Huttegger, Skyrms 
and Zollman, 2012), and the work on limit order books discussed in Section II.B.3 is 
closely related to this tradition. 

Another class of simple, myopic yet purposive agents appears in game theory, 
where they are called ‘low rationality’ agents. Such agents use strategies such as best 
reply, which means that the agent plays the move that would have been the best response 
to her opponent’s previous move (Young, 1993a, 1998). There also exist ‘best reply to 
                                                
51 Chen has written a history of agent types in use in ABM, thus permitting brevity here (Chen, 2012). The standard 
textbook in AI (Russell and Norvig, 2010) also takes an agent-centered approach and includes several kinds of agents 
that have, historically, had little application in economics, e.g., logical agents. 



Agent-Based Modeling in Economics and Finance: Past, Present, and Future 

37 

best reply’ strategies, ‘best reply to best reply to best reply’ and so on. Example ABMs 
include Axtell, Epstein and Young (2001). Such strategies are often accompanied by 
noise so that players select random strategies occasionally as well. Best reply to best 
reply suggests discrete cognitive ‘levels’. K-level cognition (Camerer, Ho and Chong, 
2004) has found use in ABMs (Latek, Kaminski and Axtell, 2009). 

In summary, simple purposive agents—perhaps the simplest ones of significant 
interest—behave by, in essence, taking their environment as fixed and reacting in their 
own immediate self-interest, by adapting their behavior to their immediate circumstances. 
If they find that additional adaptations might improve their welfare in subsequent periods 
they do this as well. They effectively follow utility or profit or payoff gradients. Over 
time they can effectively learn but they do so without a formal model of their 
environment. 

This brings up the broader question of convergence to equilibrium under bounded 
rationality. Pangallo, Heinrich and Farmer (2019) exhaustively studied this for normal 
form games when the players use best reply strategies. They showed that when a game is 
complicated and competitive the players are unlikely to converge to a pure strategy Nash 
equilibrium. Here complicated means that the payoff matrix is large, either because the 
game has many moves or many players. Competitive means that the incentives of the 
players are not lined up, i.e. that the payoffs of one player are anticorrelated with the 
payoffs of the other player (zero sum games being the extreme example). When the game 
is both complicated and competitive, the players tend to converge to cycles rather than 
fixed points. 

They also studied seven different commonly used learning algorithms, such as 
reinforcement learning, fictitious play, experience weighted attraction, and level-K 
learning, and showed that their behavior was broadly similar, and that it is closely related 
to that under best reply: When best reply converges to a fixed-point equilibrium, these 
algorithms also tend to converge to a fixed-point equilibrium, and when it does not 
converge, they tend not to converge either. When these strategies fail to converge their 
trajectories are typically chaotic, meaning that they generate perpetual dynamics that 
never settles into an equilibrium. This work suggests that in situations that are 
complicated and competitive, convergence to equilibrium is unlikely, calling into 
question some situations where equilibrium is assumed from the outset, and motivating 
the use of agent-based modeling. 

2. Agents who learn (formally) 
When agents have models of their environment they are capable of formal 

learning. There are at least three broad classes of learning discussed in the voluminous 
literature on this topic. Individual learning is typically treated as a single agent gleaning 
data from its environment and updating its model of the environment. It has roots in 
decision theory, as a game against Nature. Social learning concerns multi-agent situations 
in which individuals build models either of the population of other agents or of individual 
agents. This kind of learning can involve strategic dimensions while such considerations 
are normally absent from individual learning. Finally, group learning refers to how and 
what individuals learn in order to behave as a group for the good of the group. This is 
more common in biology than the social sciences—think fish schools (Couzin et al., 
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2011, Miller et al., 2013, Kao et al., 2014) or flocks of starlings (Hemelrijk and 
Hildenbrandt, 2011)—but occasionally appears in MAS computer science. 

There is much work today on individual learning in behavioral and experimental 
economics as well as in the ABM and MAS research communities. In each area there is a 
wide variety of learning formalisms in use. Reinforcement learning, cue learning, 
probably approximately correct (PAC) learning and other schemes common to MAS have 
been reviewed (Shoham, Powers and Grenager, 2004, Panait and Luke, 2005). In 
experimental economics Erev-Roth learning (1995) and experience-weighted attraction 
(EWA) learning (Camerer, Ho and Chong, 2002) are well-known and have been surveyed 
(Camerer, 2003). Excellent reviews of ABM learning by Brenner (1999, 2006) make it 
unnecessary for us to rehash this literature further here. 

Some early work in ABM learning focused on evolutionary algorithms, including 
genetic algorithms (Arifovic and Eaton, 1995, Bullard and Duffy, 1999, Dawid, 1999). 
However, lacking a strong basis as individual learning, such methods are often 
interpreted as population-level (social) learning, or perhaps simply as a way to 
incorporate richer notions of optimization into ABM. For example, Lindgren’s (1992) use 
of evolutionary learning leads to interesting cycles in prisoner dilemma games, including 
the endogenous growth of strategy complexity. Learning at multiple levels may amplify 
the complexity of economic and financial phenomena.52 

Twenty years ago it was common to use neural networks inside agents (LeBaron, 
2001a), although this is less common today. Deep learning (LeCun, Bengio and Hinton, 
2015, Schmidhuber, 2015) has begun to be used in ABMs but it is too early to know the 
implications. 

3. Behavioral agents 
ABMs in which agent behavior is made to reproduce the results of experiments are 

growing in number. There are ABMs in which agents behave in accord with prospect 
theory (Kahneman and Tversky, 1979, 1992), including the previously mentioned 
EurACE model, others where agents engage in hyperbolic discounting (Chen and 
Gostoli, 2014), and yet others in which agents possess one or more behavioral biases in 
their decision calculus. An ABM employing behavioral agents in the context of elections 
is the work of Bendor et al. (2011). 

There is a relatively long history of building the behavioral specifications of 
ABMs from experimental data, as surveyed in the now somewhat dated review by Duffy 
(2006), assertions to the contrary notwithstanding (Wunder, Suri and Watts, 2013). For 
instance, Hommes and Lux (2013) used learning-to-forecast laboratory experiments with 
human subjects (Hommes et al., 2007) to create a model of heterogeneous interacting 
agents capable of explaining macro phenomena. Similarly, Bao, Hommes and 
Makarewicz (2017) use data from a laboratory experiment on bubble formation to 
calibrate an ABM. Cotla (2016) has built ABMs to reproduce laboratory experiments, then 

                                                
52 It is interesting to compare approaches taken by economists to those of computer scientists when it comes to 
learning. More than a decade ago in a special issue of the journal Artificial Intelligence (Vohra and Wellman, 2007), 
researchers from both disciplines wrote about the topic. The economists were mainly interested in learning schemes 
that led to Nash equilibria (Erev and Roth, 2007, Fudenberg and Levine, 2007, Young, 2007) while the computer 
scientists (Sandholm, 2007, Shoham, Powers and Grenager, 2007, Stone, 2007) asked where computationally plausible 
learning rules led. 
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perturbed the experimental set-up and the ABM in non-trivial ways, running the 
computational model in advance of the actual experiment to forecast the likely outcome, 
then comparing the result with human subjects directly to the computational results, and 
finding good agreement. 

Many of the behavioral specifications that have come out of laboratory 
experiments are not readily tractable analytically so computation may be the natural way 
to proceed (Simon, 1998). ABM is also good for ‘scaling-up’ laboratory results to realistic 
population sizes, to look at side effects, unintended consequences, etc. Surely there will 
be more use of behavioral and experimental results in ABMs going forward. 

4. Other kinds of agents 
There are at least three broad classes of agents that have found significant use in 

ABMs in computer science and some of the other behavioral and social sciences, but 
which have yet to find their way into economics and finance. First, agents outfitted with 
explicit cognitive mechanisms are widely used in cognitive science; a book length review 
is Sun (2006).53 However, rich cognitive models face challenges of intelligibility: when 
some social phenomenon arises in models featuring agents with deep cognition, it may 
not be clear whether the phenomenon should be thought of as a consequence of the 
cognitive model, of the social interactions, or both. This same difficulty haunts all of the 
empirical social sciences, so in confronting it ABMs are simply recapitulating the real 
world.  

The second kind of agent occasionally encountered beyond economic ABMs are 
those with emotions. The role of emotions in decision making has been long noted 
(Hume, 1896 [1739]) and has been studied with regard to economic decisions in 
particular (Frank, 1988). A variety of models for the role of emotions have appeared 
within the MAS literature (Elliott, 1992, Bates, 1994, Velásquez, 1997, Fix, von Scheve 
and Moldt, 2006, Rodríguez and Ramon, 2014). Sometimes these are grounded in data 
while other times they are more notional. In any case, this is an active area of research. 

A third class of agent not yet much utilized in economic ABMs are deontic agents. 
While it is almost universally true that models in economics and finance make use of 
utilitarian agents—i.e., who pursue their own self-interests and are purposive—there are 
other ways to motivate agents. A small but growing body of research, investigates 
individuals who take account of norms, recognize duties and obligations, “see to it 
that…,” while being capable of subordinating their self-interest to group goals. It turns 
out that there are important relations between utilitarian and deontic agents under certain 
conditions (Horty, 2001). Research on deontically-motivated agents has uncovered a set 
of modal logics known as KD45 that have certain desirable properties (Lomuscio and 
                                                
53 Cognitive science originated roughly contemporaneously with the behavioral revolution in economics (Newell and 
Simon, 1972). Cognitive theories implemented as cognitive architectures (Anderson, 1983), include SOAR 
(Rosenbloom et al., 1985, Laird, Rosenbloom and Newell, 1986), used in a variety of high-fidelity simulation 
environments—such as military and civilian air traffic—typically involving one or just a few humans, ACT-R 
(Anderson, Matessa and Lebiere, 1997), CLARION (Sun, 2006), and several focused on social behavior (Dautenhahn, 
1999) and more suitable for MAS and ABMs. Although technically not a cognitive architecture the Beliefs-Desire-
Intention (BDI) architecture is a non-human model of cognition that has been very popular in the MAS community (Rao 
and Georgeff, 1995), less so in ABM. None of these models have deep biological grounding. A relatively new kind of 
cognitive model has components that resemble biologically structures. These are called biologically-inspired cognitive 
architectures (BICA), and a number of them have appeared; see Goertzel et al. (2010) for a review. So far they have 
been little used in ABM.  



Agent-Based Modeling in Economics and Finance: Past, Present, and Future 

40 

Sergot, 2002). A closely related area is doxastic logic, or reasoning about beliefs. Early 
surveys of these topics include Wooldridge and Jennings (1995a) and van der Hoek and 
Wooldridge (2007). These are active research areas, recently reviewed by Calegari et al. 
(2021). Relatedly, Danielson (1992, 1996) considers moral agents while Cointe, Bonnet 
and Boissier (2016) assess ethical judgment in multi-agent systems. 

C. Direct Agent Interactions 
In many economic models agents do not interact directly with one another but rather 

decide how to behave using aggregate economic quantities like prices, interest rates, and 
wage levels. That is, there are few examples of models where agents glean information 
directly from their peers, communicate in any meaningful way with anyone, or 
consummate economic exchange directly with each other. It is a kind of methodological 
individualism without individuals! This abstraction does little violence in static 
equilibrium settings, since the mechanisms by which fixed points are assumed to be 
achieved are not studied. That is, substantive rationality abstracts from the details of who 
trades with whom, or where information comes from. However, when one attempts to 
generate economic phenomena using ABM, the notion of direct agent-agent interactions 
comes quite naturally, as in models of the Marseille fish market of Kirman and Vriend 
(2000, 2001), in which the relationships between buyers and sellers was shown to be 
important. In this section we focus on the varieties of such interactions, first with respect 
to their topology and then the manner in which agents are activated to interact. 

1. Networks 
In the last 15 years there has been a great flowering of the science of networks 

(Watts, 1999, Barabasi, 2002, Newman, 2010) with social (Jackson, 2008) and buyer-
supplier networks (e.g., Atalay et al., 2011) earning their distinct places within 
economics. Networks are not part of the standard neoclassical picture, as suggested in 
table 1 above, as the default assumption in economics is that agents are ‘well-mixed’—
each sees the same prices, interest rates, wages, and so on. Relaxing the completely 
connected character of neoclassical agents with a network of interactions was attempted 
early on by Föllmer (1974) and discussed in detail by Kirman (1997). ACE models 
usually take networks into account in one way or another. A reasonably recent 
monograph reviewing the literature on agents and networks (Namatame and Chen, 2016) 
relieves us from having to review this large literature here. An important motivation for 
agent computing and social networks is that realistically complex networks are often 
difficult to work with analytically, making recourse to ABM natural (Jackson, 2008: 406-
7). 

2. Agent interaction regimes 
A facet of direct agent-agent interactions beyond networks involves agent 

activation. It is conventional practice in ACE models to permit only one—or at most a 
few—agents to be active at any one time. In part this stipulation derives from the serial 
nature of the computer hardware on which agent models are typically executed. But it 
also stems from the desire to not engage in perfectly synchronous updating, as is common 
in cellular automata. Perfect synchrony should be avoided because (1) it can lead to the 
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production of meaningless artifacts in model output, as we saw in the Nowak and May 
versus Glance and Huberman affair, and (2) the social world is clearly asynchronous. 54 

With all agents running on a single thread the question arises as to which should 
move first, which second, and so on. The order of execution can be randomized in 
various ways, and one might hope that the overall results of a model would not depend on 
such microscopic details, but that is generally not the case. While some ABMs use an 
endogenous internal model state to activate agents, such as when a profit opportunity is 
sensed, most do not. Rather, most models, in effect, generate a schedule of agent 
activations, usually stochastically. There are three ways this is commonly done (Axtell, 
2001a). First, in a population of A agents, uniform activation is the process by which all A 
are activated once, sequentially, in effect defining a unit of model time or a period. This 
amounts to sampling the agents without replacement in each period, so that over p 
periods each agent is activated exactly p times. In order to insure that no artifacts are 
produced because the ith agent always moves before the (i+1)st, the order has to be 
partially randomized regularly. Usually this can be done efficiently. 

Contrast this with a second activation regime, called random activation, in which 
a period is still defined as A agents being activated, but at each instant within the period 
the agent selected to be active is random. This means that during any particular period 
some agents may get turned ON more than once while others do not get activated at all, 
effectively sampling the agents with replacement. In essence, the activity of any 
particular agent in a period now has some variability where it did not for uniform 
activation. This subtle difference is known to matter in some ABMs (Axtell et al., 1996, 
Lawson and Park, 2000). 

The third most common agent activation regime is Poisson clock activation. In 
this scheme each agent is given a series of times—a schedule—when it will be active by 
drawing from an exponential distribution, meaning that the times between activations are 
independent. The activation times of the whole population are then sorted into a master 
schedule, used to determine which agent moves next. This type of activation produces A 
activations/period on average, and within each period some agents can be more active 
than others, as in random activation. This regime has been used by game theorists, since 
it has tractable analytics (e.g., Lagunoff and Matsui, 1997). 

Other activation schemes are possible (Comer, 2014) but the three above are the 
most common ones used in ABM today. They are compared in table 3. Today we still 
have little understanding of how to select between these distinct activation regimes. In the 
best of all possible worlds we would have empirical data on the character of agent 
activity, but such data are virtually non-existent today. 

Such activation schemes are imposed on the agents exogenously. It is also 
possible to have endogenous activation in which quasi-autonomous agents decide 
themselves when to be active and then put in a request (to a central authority or to the 
operating system) to be activated. Such activation schemes are used in certain market 
models in which agents decide when to enter bids. 

                                                
54 One way to model complete asynchrony, and a high degree of agent autonomy, is to put each agent on its own 
thread of execution. This is rarely done today, due to the difficulties of writing highly parallel code. Rather, nearly all 
ABMs (>99%) are single-threaded, making agents only partially autonomous. Although it can be proved to be the case 
in some special circumstances (Chen and Micali, 2013). 
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Activation Regime # active/period activations/agent/period 
Uniform A 1 
Random A 1 on average 

Poisson clock 𝐴 1 on average 

Table 3: Comparison of common activation regimes for a population of A agents 

All of the above are highly democratic activation schemes. Considering agent 
activation to be a scarce resource, in the sense that there are only so many CPU clock 
cycles to be allocated to all agent activations, some (e.g., Page, 1997) have wondered 
what might happen if agents could ‘buy’ or otherwise acquire additional activation 
cycles. By analogy, when a firm hires a worker in the real world it is essentially 
purchasing 8 hours/day of effort that it would not otherwise have at its disposal. While it 
is fair to say this idea for valuing agent activation has not found its way into many 
models to date, it seems like a fertile idea, deserving closer study. 

D. ABM Markets: Beyond the Walrasian Model 
Markets are workhorses in ACE models. These come in all shapes and sizes, from 

CDAs to bilateral trading, with 2 to 2 million goods, either divisible or indivisible, and so 
on. But what is perhaps surprising is that it is rare for such market specifications to hew 
very closely to the conventional Walrasian picture of markets. One reason for this is the 
computational intractability of such market mechanisms, i.e., the computational 
complexity of Brouwer fixed points (technically in complexity class PPAD mentioned 
above). While there exist algorithms to approximate these, they have little to do with 
markets operating from the bottom up (Rust, 1997). 

Given this state of affairs, the kinds of markets that appear in ABM often have 
messy features like local prices, miscoordination, and inefficiency, at least initially 
(Moss, 2001b). But as ABMs evolve through time they often reduce these problematical 
features: prices become more homogeneous as marginal rates of substitution (MRSs) get 
aligned, agents progressively coordinate their behavior, and inefficiencies decline. But it 
is rare to find anything like the perfect, noiseless, crystalline world of Walrasian prices 
and allocations. 

A consequence of having local prices in many ABMs is that large volumes of 
trades take place at prices that are different from the Walrasian ones that could, in 
principle, be computed by a social planner having perfect information. Such trades have 
welfare effects, meaning that the utility levels produced in such decentralized, distributed 
markets are not Walrasian, primarily due to changes in wealth that arise over the trading 
process. At first blush this departure from the welfare theorems may appear to limit the 
value of ABMs for theoretical or other work. However, the spontaneous appearance of 
price heterogeneity can be thought of as a feature, not a bug, for price dispersion is 
common in real-world markets and economies (e.g., Abbott III, 1992). Prices can 
fluctuate over time and vary over space, both in the real world and in ABM models of it. 
This is fine as long as price dispersion in the model reflects that found in the real world. 

E. Institutions, Emergent 
A common complaint against general equilibrium theorizing is that it is 

‘institution-free’ (e.g., Leijonhufvud, 1993). The essence of this critique is that real-world 
economies feature a variety of institutions for either formally or informally coordinating 
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activity. In a fully satisfactory economic model a wide spectrum of such institutions 
would arise, or at least be present, acting to at least partially coordinate economic 
activity. 

Today we lack an understanding of which rules of agent behavior are sufficient to 
produce realistic-looking multi-agent institutions. However, there are several agent 
models in which certain intermediate level, multi-agent conventions and norms arise 
(e.g., Kandori, Mailith and Robb (1993), Young (1993a, b), Bicchieri and co-authors 
(1993, 1997), Shoham and Tennenholtz (1997)). For example, in models of agricultural 
crop sharing social conventions associated with contracting are the usual way harvests get 
divided (Young and Burke, 2001). The previously mentioned book by Cederman (1997) 
investigates the emergence of state actors. While there is still no fully satisfactory theory 
of such emergent institutions, some progress has been made (Young, 1998). 

Work with ABMs on the emergence of institutions includes Smaldino and Lubell 
(2011, 2014) who look at coalition formation in the context of agents who play an 
ecology of games, not unlike previously mentioned work of Bednar and Page (2007). 
Another example is Axtell’s (1999, 2002, 2016) firm formation model. While multi-agent 
firms are permitted to form in this model, the overall size and structure of the population 
of firms can be thought of as emerging from the interactions of the agents. Under specific 
conditions very large firms arise, having millions of workers, and once these are 
produced, they alter the landscape of employment opportunities that are available to other 
agents in the population. That is, once this structure has emerged from the bottom up, it 
has important ramifications from the top down for subsequent epochs of the economy. In 
finance, questions related to which kinds of securities populate markets have been studied 
by Noe, Rebello, and Wang (2003, 2006). Using ABM they find that certain market 
environments support the formation of complex securities but heterogeneous, learning 
agents may have difficulty coordinating on their pricing, so simpler types of financing 
can persist. 

In order for an institution to be considered emergent it is necessary to describe a 
mechanism that produces it. Some have claimed that the quintessential example of 
emergence in economics is Adam Smith’s invisible hand, and the corresponding welfare 
theorems of general equilibrium (e.g., Durlauf, 2012). But today we still do not know 
how to generate Walrasian prices from the bottom up, so we do not understand the 
mechanisms for emergence.55, 56 

F. Economies as Many-Level Systems 
It is conventional for economists to consider economies as multi-level systems, to 

treat the agent level as different from the aggregate level, as shown in figure 5. In moving 
between levels one must be careful not to succumb to the dual fallacies of composition 
and division. It is a truism in economics that knowing how the micro (agent) level works 
may not give us much insight about the operation of the macro-level, an explicit 
acknowledgement of the fallacy of composition. But explaining aggregates in terms of 
                                                
55 For Nozick (1994), invisible hand explanations required credible underlying social processes. 
56 For instance, Crockett, Spear and Sunder (2008) have studied how individuals might learn general equilibrium 
prices by repeatedly facing approximately the same market conditions from day-to-day and learning what prices to pay 
(locally) that yield individually budget-balanced conditions throughout the economy, i.e., for all agents. But even in 
this highly restricted environment they find non-convergence for sufficiently large numbers of agents and goods. 
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individuals is all too common, as when particular stock market fluctuations are 
anthropomorphized as reflecting the ‘mood’ of investors or of the market overall. 
Likewise, attempting to draw conclusions about the agent level from aggregate data is 
equally problematical, a fallacy of division, closely related to the ecological inference 
problem in econometrics. Agent computing offers a way to explore the multi-level 
character of economies by permitting higher order structures to emerge from lower level 
interactions.57 

<Figure 5 about here> 
For example, consider again the emergence of firms from the decisions of 

individual workers (Axtell, 2016). In general equilibrium theory it is normal to consider 
firms as occupying the same ontological level as consumers. But it is useful to consider 
them as ‘above’ the agent level, since they are composed of multiple agents. They occupy 
a meso level, with the aggregate level, involving the entire population of firms, above. 
This three level picture of an economy is shown in figure 6. Consider the aggregate state 
to be z while the meso-level is y. ABMs usually operate at the lowest level x, with code 
implementing the function f for marching the model forward in time. How one might 
derive the functions g and h for faithfully representing the higher levels is an important 
question for fields like industrial organization and macroeconomics. These functions are 
implicit in the ABM in the sense that at each instant in time we can simultaneously 
observe x, y, and z. When the many levels of regulation and governance are taken into 
account real economies may be 4, 5, or 6 level systems. 

<Figure 6 about here> 

G. Social Steady-States With or Without Agent-Level Equilibrium 
When agents are adaptive and their environment is changing, or when agents are 

learning how to alter their behavior to take advantage of their circumstances, behavior at 
the agent level may change. Changes in behavior may indicate that the agent level is out 
of equilibrium. As argued by Arthur (2006), this situation is very common in ABM. In 
fact, in wide classes of economic and financial ABMs it is normal to observe sizable 
fractions of agents changing their behavior regularly. Perpetual adaptation and 
adjustment is the norm in ABM, which may or may not lead to systemic changes at the 
aggregate level. Such changes may resemble mixed strategy Nash equilibria, as we saw 
in the El Farol model, but they need not (e.g., Pangallo, Heinrich and Farmer, 2019). 

Equilibrium at the agent level, e.g., Nash or Walras, certainly implies equilibrium 
at the aggregate level, i.e., it is sufficient (Farmer and Geanakoplos, 2009). However, it is 
not necessary, for it is possible to have aggregate stationarity even without equilibrium at 
the agent level. In practice, most ABMs exhibit flux at the agent level yet stable patterns 
and statistics at the aggregate level. Mathematically it would be useful to have solution 
concepts that permit agent dynamics and population patterns of this type. While 
important research on this topic has appeared (Aoki, 1998, 2001), much work remains. 

One way to think about all this is that macro-steady-states are emergent 
                                                
57 Interestingly, within the MAS research community, populated as it is mostly by computer scientists and engineers, 
there is strong difference of opinion as to the value of emergence in agent models. This was clearly on display in the 
inaugural edition of a new journal in which some of the editors thought that focus on emergent behavior was warranted 
and part thought it was not (Jennings, Sycara and Wooldridge, 1998). 
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phenomena. What can we say about them ahead of time? Can we deduce things about 
their size or stability? While it is clear that such emergent configurations are produced by 
the actions of the agents, thus adopting a reductionist stance, it is also reasonable to be 
pragmatically anti-reductionist (Simon, 1996 [1969], Faith, 1998), admitting it is hard to 
know exactly what will emerge, just as it is hard to determine what can happen in the 
‘Game of Life’ simply by looking at the rules. Experience shows that it is very hard to 
forecast the character of emergent steady-states in the economy.58 

H. Empirical Grounding of Agent Economies 
There are a wide variety of ways that ABMs attempt to represent the real world, 

and several distinct approaches to making such models reflect reality.59 Given the multi-
level character of all ABMs, a specific model may be empirically-relevant at one or more 
levels. For example, Friedman (1953) famously argued that a model could be useful at 
the aggregate level while being behaviorally wrong at the agent level, what Simon 
dubbed “the principle of unreality” (Simon, 1963). In this section we will briefly review 
distinct approaches to building progressively more realistic ABMs, roughly following the 
typology laid out in Axtell and Epstein (1994). 

ABMs always need behavioral specifications. Where do these come from? 
Possibly the model builder has sufficient knowledge of the domain to create reasonable 
behavioral rules in software, at least up to some unknown parameters (to be estimated). 
Possibly domain experts can be queried for rules, parameters, or both, a process known in 
decision theory as expert elicitation (Morgan, Henrion and Small, 1990), although care 
must be taken to avoid certain pitfalls (Morgan, 2014). There are also techniques to infer 
rules directly from data (Thagard, 1988). 

1. Agent models qualitatively reproduce aggregate patterns 
The first level for an ABM to pass muster is whether it is capable of producing 

outputs that qualitatively resemble aggregate data, i.e., that can match stylized facts. 
There are typically gross patterns in aggregate data that an ABM should match in order to 
be considered successful. The way this is done with IBMs has been nicely surveyed 
(Grimm et al., 2005) and many of the same considerations apply in the social sciences. 
For example, in the case of artificial stock markets, it is desirable for models to reproduce 
qualitative aggregate phenomena like clustered volatility, heavy-tailed return 
distributions, and log prices time series with little autocorrelation (Cont, 2001). 

In practice there are a wide range of approaches for specifying parameters in 
ABMs. Sometimes they can be approximated from experience, sometimes set from 
logical, dimensional, or model-specific regularity considerations (e.g., suppliers will not 
                                                
58 Occasionally one encounters the claim that ABMs are simply large Markov processes (Banisch, 2016), but even if 
this were strictly true it would provide little leverage on determining emergent properties. 
59 The phrase ‘verification and validation’, abbreviated V&V, is common in operations research for questions 
concerning the veracity of computational models. Verification refers to whether a model is logically sound, e.g., free of 
bugs, and executing in accord with an independent specification of the model—basically, that it is doing what it is 
supposed to be doing. This is typically a low bar and checked heuristically. (While formal methods exist in computer 
science that can be brought to bear on such questions (Wooldridge et al., 2002, Belardinelli et al., 2018), they are 
usually impractical for non-trivial ABMs.) Validation is a relatively uncommon term in the social sciences, for in asking 
whether a model is a valid depiction of a social process, the answer is rarely yes or no. Given that these terms are not 
widely used in economics and finance we shall not discuss the empirically-grounding ABMs as V&V. 
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lower their posted prices below their costs), and sometimes they are simply invented and 
tested through experimentation to determine what is needed to produce the kinds of 
aggregate patterns desired. 

2. Agent models quantitatively reproduce aggregate data 
When aggregate patterns are quantifiable then more formal calibration and 

estimation techniques can be employed. Perhaps the most common approach used in 
ABM for specifying parameters is search of a model’s parameter space in order to 
minimize the difference between model output and the aggregate data. When the 
parameter space is not prohibitively large then conventional estimation techniques can be 
used (Heard, 2014, Heard et al., 2015). Computational techniques created for analytically 
intractable models, such as ‘estimation by simulation’ (McFadden and Ruud, 1994) can 
often be adapted to ABM. Such formal estimation procedures are commonly used in 
financial market ABM (e.g., Alfarano, Lux and Wagner, 2005, 2006, 2007). Spatial ABMs 
can also be estimated using such approaches (Hooten and Wikle, 2010). When the 
parameter space is large it becomes necessary to search heuristically (Michalewicz and 
Fogel, 2000, Luke, 2013), e.g., via evolutionary algorithms (e.g., Terano, 2007). A recent 
review of empirical validation methods for ABMs is Lux and Zwinkels (2018) and more 
recent work includes Delli Gatti and Grazzini (2020) and Platt (2020) who employ 
Bayesian methods. 

3. Agent models quantitatively reproduce micro-data 
Many of the same techniques can be used when the kind of data that are available 

are at the individual level. Considerations related to microeconometrics are now in play 
(Cameron and Trivedi, 2005), such as the Manski critique (Manski, 1993, 1995, 1997). In 
essence, if data are not gathered to preserve independence and other properties it will not 
be possible to distinguish selection effects. 

One way around some of these problems is to acquire individual-level data from 
experiments. In sections III.B.2 and III.B.3 we have discussed the use of experimental 
data to specify agent models (Duffy, 2006, Wunder, Suri and Watts, 2013, Cotla, 2016). 
This approach has been utilized in finance settings as well (e.g., Hommes, 2011). It may 
turn out that there are fundamental limits to what can be predicted at the individual level 
with any method (Salganik et al., 2020). 

I. ABMs for Policy 
In section II.B.2 we described the use of ABM by NASDAQ management to assess 

the effects of decimalization on the operation of their market in advance of its 
implementation as policy was described. In the future it would seem reasonable for 
policy-makers to avail themselves of ABM technology in order to test in advance which 
kinds of regulations make the most sense, whether for producing greater social welfare or 
simply to avoid noxious side effects of untested policies (Helbing, 2012). For instance, it 
may turn out that certain kinds of policies are sensitive to things like agent heterogeneity, 
that ABMs are good at representing (e.g., Arifovic, Bullard and Kostyshyna, 2012). 
Alternatively, evolutionary or other open-ended approaches for policy synthesis could be 
employed, possibly yielding surprising, even counter-intuitive policy ideas, such as the 
‘faster is slower’ phenomenon described in Gershenson and Helbing (2015). While the 
penetration of ABM for such purposes into governance institutions in economics and 
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finance has been modest to-date, in other fields policy decisions based on ABM have 
become standard (e.g., in epidemic control, Gemann et al., 2006, Gomes et al., 2014). 
Indeed, the model of Ferguson et al. (2020) was decisive in formulating national policies 
around the world at the outset of the SARS-CoV2/COVID-19 pandemic, although not 
without controversy (e.g., Eubank et al., 2020). 

IV. Future Opportunities and Challenges for ABM 
In this section we discuss areas where ABM is poised to make progress and others 

where there appear to be significant roadblocks and further research is needed. 

A. Opportunity: Micro-Data Integration (Including Social Network Data) 
We discussed multiple ABMs in which micro-data were essential to the operation 

of the model. When such data are available, whether from administrative records, 
customer information, GIS layers, or elsewhere, ABM can serve as a platform for 
integrating them. 

Social network data represent a case in point. Twenty-five years ago neither 
ABMs nor social network analysis (SNA) were in the vocabulary of economists. A great 
deal has changed since the early 1990s. It is our experience that many people working at 
the research frontier tend to think either in ABM or SNA terms but few do both. Thus, 
independent software ecosystems have grown up around these two distinct approaches 
and overall, there is currently very little integration. Surely this will change. A decade 
ago there was very little integration between GIS software and ABMs, but now many of 
the major agent-based software systems are able to read shape files, making true spatial 
modeling possible. 

B. Opportunity: Moving To Large-Scale and Full-Scale Models 
An unusual property of ABMs is that typically the actual programs are quite small, 

involving only a few hundred lines of code for prototype models or perhaps a few 
thousand lines for models written in native code. Nonetheless, very large amounts of 
memory can be filled by the agent population.60 It is normally a relatively simple matter 
to expand an agent model to fill available memory by simply instantiating more agents. 
Larger numbers of agents can generate qualitatively different behavior—Anderson’s 
(1972) ‘more is different’ idea—and this may be important in establishing the empirical 
relevance of an agent model. Larger populations also produce more robust statistics. 

Indeed, this last point has a special interpretation when it comes to ABM 
economies. For many empirical quantities in economic data are distributed with heavy-
tails. Examples of this include Pareto distributed wealth, firm sizes, and city sizes. These 
data are so skew that for small numbers of agents it is hard to assess the character of the 
distributions that arise. With firm sizes there is a big difference in going from 10,000 
agents, in which the biggest firm might be size 100 (1% of the population in the largest 
firm), up to 1,000,000 agents and a size 10,000 firm. Clearly an economy with a biggest 
firm of size 100 is quite different from one in which it is 100x larger. 

                                                
60 A more technical way to say this is that ABMs have a small compile-time, potentially large run-time character. 
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C. Challenge: Software Tools that are Easier to Use 
Existing platforms and frameworks for building ABMs are summarized in an 

appendix to this article. But are these really the right tools for the economics profession 
today? There is a good opportunity to create economics-specific ABM tools and 
technologies that facilitate the creation of the kinds of models that economists care about. 
Examples include agents with various kinds of learning algorithms (e.g., reinforcement 
learning, experience-weighted attraction, neural networks) and behavioral heuristics, 
firms that seek profits and/or market share using via exploration and exploitation, central 
banks that have the Taylor rule in their behavioral repertoire as well as more 
sophisticated tools and techniques, commercial banks that lend to businesses and 
households, certain kinds of accounting procedures/rules/standards, a variety of contract 
types, even specific market institutions. In the same way that specific statistical software 
packages grew up to service the needs of econometricians, we need new ABM packages 
that are geared toward economists who would like to construct models without needing to 
become experts in software engineering. Such software tools are on the horizon. It us 
now up to us to shape those in ways suitable for both research and teaching. 

D. Challenge: Parallel Execution 
There are two reasons why it is highly desirable to use many computational units 

in parallel. The first is the practical question of execution speed: ABMs typically require 
substantial computation for testing and estimation. Parallel execution provides the most 
promising avenue for speeding things up in a world of multicore procesors. However, 
getting significant speedup through parallel processing is a difficult problem. (The 
exception is so called “embarrassing parallelism”, which corresponds to running models 
independently; this is sufficient for some purposes, such as exploring a model’s 
parameter space, but is inadequate for many others, such as large-scale models). 
Hardware for parallel processing, such as GPUs, offer great promise, and software 
environments for facilitating ABMs running on such devices are available (e.g., Kiran 
(2017) and see Appendix 3). 

The other reason why parallel processing is important is because this is how the 
economy operates (Rust, 1997). We must be careful when we use single-threaded code, 
which does everything serially, to mimic a world in which actions occur in parallel. The 
real social and economic worlds are parallel and asynchronous and it is an open question 
as to whether there are things that can happen in such worlds that are either difficult or 
impossible to faithfully represent using the kinds of parallel computing tools available 
today. 

E. Opportunity and Challenge: Is ABM a Kind of Nanoeconomics? 
More than 30 years ago the late Kenneth Arrow, in commenting on remarks of 

certain economic historians that seemed to be at a level of analysis lower than 
conventional microeconomics, wondered if a new kind of economics was needed to 
properly address those concerns, what he termed ‘nanoeconomics’ (Arrow, 1987: 734). 
We have seen above that there may be certain aspects of ABM that go below standard 
microeconomics, such as the order of execution in single-threaded models, parallel agent 
execution, and related issues having to do with how and when agent states are updated. 
Such considerations manifest themselves to some extent in the theory of oligopoly, with 
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first-mover advantage and so on, and to some extent in certain kinds of games, but are not 
present in other branches of micro. Largely this is because microeconomic models are 
solved for equilibria, without worrying about the paths along which the agents might 
move toward such equilibria. 

This leads one to wonder if one upshot of ABM, in which the details of agent-
agent interaction matter, may require moving to a more fine-grained nanoeconomic level, 
in which the specifics of agent updating and learning, of the paths agents take out-of-
equilibrium, are made explicit. The usual micro-macro distinction in economics refers to 
abstraction levels in terms of agents—traditionally macro abstracted from individuals. 
But with micro-foundations of macro now the norm, this distinction has been muddied. 
Macro today is primarily concerned with aggregate economic variables, produced by 
individuals. Nanoeconomics might contrast to microeconomics in similar fashion. We 
seek nanoeconomic foundations for micro in the sense that the detailed interaction 
histories—the nano-level—determine the micro-level. In the end, for nanoeconomics to 
become a field it would be necessary for it to find a home in other branches of 
economics. How might new new trade models unfold when one exporter moves first? 
How can a developing country catch-up to a neighbor when its neighbor has modernized 
first? These are the kinds of questions economists working in trade and development 
might care about and today there is no very satisfactory way to pose them because 
microeconomics does not operate at levels that would seem to be needed to resolve them. 

F. Opportunity: New Kinds of ABMs for Economics and Finance 
Some 25 years ago the science journalist Mitchell Waldrop thought researchers at 

the Santa Fe Institute were on the verge of producing “economies under glass” in 
software (Waldrop, 1992). This vision has not been realized. To do so would require new 
kinds of models. For instance, imagine a model of a developing country in which all 
citizens and firms are represented, that can be used to digitally experiment with 
alternative government policies. In computer science such high fidelity digital 
environments are sometimes called ‘mirror worlds’ (Gelernter, 1992) or ‘digital twins’ 
(Grieves and Vickers, 2017). Sometime within the next few decades it should become 
possible to produce high fidelity, digital models of economies in which every household, 
every consumer, every firm, every worker, and every policy-maker are represented in 
some way. It is our belief that technologies like ABM will serve as the basis for such 
developments. 

G. Challenge: The Curse of Dimensionality 
The curse of dimensionality refers to situations where modeling difficulty 

increases exponentially with dimension. The term was first coined by Bellman (1957) in 
reference to dynamic programming, but the basic problem occurs for any estimation or 
search problem in a high dimensional space. From a geometric point of view the curse of 
dimensionality comes about because almost all points in a high dimensional space are in 
some sense “far apart”, e.g. they are almost all close to the median distance from each 
other, so that there is effectively no such thing as a “nearest neighbor”. As a result, the 
amount of data required to estimate a model of a given accuracy grows exponentially 
with the dimension of the space.  

Since the economy is composed of many interacting elements, any model that 
takes this into account faces the curse of dimensionality. This is because many interacting 
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elements require many state variables, which usually also means many free parameters. 
While agent-based models have the advantage of being relatively tractable to formulate 
and execute, the problem of calibrating a realistic (and therefore complicated) ABM to 
data faces the curse of dimensionality. 

This can potentially be addressed in several ways. First, as mentioned above 
(section III.H.2), Bayesian methods that take advantage of developments in machine 
learning and encourage parsimonious fitting are now being applied to ABMs (Delli Gatti 
and Grazzini, 2020, Platt, 2020). While this doesn’t overcome the curse of 
dimensionality, it places ABMs on an equal footing with more conventional models, 
where Bayesian estimation is well developed. 

Second, recent work suggests that even for large models with many free 
parameters, it is common that only a few combinations of parameters strongly affect 
model outputs (Transtrum et al., 2015).  Stated in more technical terms, the eigenvalues 
of the Fisher information matrix, which measures how much each parameter affects 
model outputs at a given point in the state space, are often distributed approximately 
exponentially.  This means that there are only a few eigenvectors in the parameter space 
that strongly affect outputs, and the remaining eigenvectors make little difference.  As a 
result, getting a reliable fit to the data that will hold up out-of-sample only depends on 
fitting a few important combinations of parameters, thereby avoiding the curse of 
dimensionality61 (Naumann-Woleske et al., 2021). 

Finally, because ABMs are formulated at a microscopic level, they offer the 
possibility of estimation based on microdata rather than aggregate data, thereby vastly 
enlarging the amount of data available for estimation.  The historical data for estimating a 
conventional aggregate macroeconomic model only contains on the order of a kilobyte of 
information62.  In contrast, at the microscale of individual firms and households the 
historical record contains vastly more information.  This suggests that agent-based 
models simulating the behavior of firms and households, whose parameters are calibrated 
using microdata, could outperform aggregate models.   This should encourage national 
statistics agencies to collect more microdata, resolve confidentiality problems, and make 
it available to researchers. 

H. Challenge: Estimating Initial Conditions for ABMs 
In conventional macroeconomic models the ability to create forecasts is an 

essential feature that makes them useful to policy-makers. Such models are estimated 
with current data and then initialized to make forecasts or to study the effects of 
alternative policies. For an ABM macro model to be used for time series forecasting, an 
important problem arises that has no analog in normal macroeconomics. 

                                                
61 Reducing the fitting requirements to a few combinations of parameters is very useful for prediction (e.g. conditional 
forecasting) but it is not necessarily useful for estimating individual parameters. This is because parameters act in 
combination on the outputs, so that while the combination may be correct, the individual parameters may not be.   
62 Consider a multivariate annual time series of 10 aggregate indicators such as GDP, unemployment, etc. from 1950 
to 2020, corresponding to 70 measurements each.  If each of these is accurate to one part in 256, and if the 
measurements are independent and uniformly distributed throughout their dynamic range, this corresponds to 700 bytes 
of information.  The presence of correlations and non-uniform distributed values suggests that this is wildly optimistic 
and that going to quarterly timescale will make little difference – the true amount of information is likely less than 100 
bytes. 
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Conventional macro-models are constructed in terms of aggregate variables that 
coincide with acquired data about the economy. This is convenient because the resulting 
data can be directly used to initialize these models. But ABMs are dynamical systems that 
model the world at the level of individual agents, such as households and firms. In order 
to run the model it is necessary to initialize the states of all of the individual agents in a 
way that is also compatible with aggregate measurements. Doing this properly requires 
complete micro-data on individuals, which is typically not available. 

Absent such data it becomes necessary to invent plausible states for each 
individual agent so that the aggregate states of the model match the measured aggregate 
data. However the individual states in the model also need to compatible with each other 
and with the inherent dynamics of the model. If the states are not compatible in this 
sense, the model will generate transient behaviors that will result in poor forecasts. Given 
that model forecasts are never perfect, this is a recurrent problem—as time passes the 
forecasts of the model inevitably deviate from the measured aggregate data, and the 
initialization process must be repeated again and again. While there are new results that 
provide an example of how this can be done (Kolic, Sabuco and Farmer, 2022), finding 
good methods for doing this is an open problem that must be solved if we are to use 
ABMs for time series forecasting. 63 

I. Challenge and Opportunity: How to Create ABM Community Models? 
With the rise of the digital computer over the past 70+ years, scientific disciplines 

have institutionalized its use in different ways. While computing resources were initially 
operated in centralized fashion within most colleges, universities, think tanks, 
government laboratories, and other research institutions, the personal computer 
revolution of the 1980s largely decentralized computing, putting it close to the ultimate 
users. However, in a few fields things evolved somewhat differently. 

Weather modeling is one of the important legacies of John von Neumann’s early 
efforts with digital computing (Edwards, 2010). In the wake of progress, work on weather 
at Princeton became institutionalized at the Geophysical Fluid Dynamics Lab (GFDL), 
supported by strong Federal government funding to keep the nascent numerical weather 
modeling enterprise alive. One rationale for this funding was that accurate weather 
forecasts were viewed as a military asset. Over decades there grew up at Princeton, and 
later at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado, a 
suite of community models relevant to weather, climate, and other atmospheric and 
oceanic projects. These models today continue to be sustained by federal research 
funding—the National Oceanic and Atmospheric Administration (NOAA) has a line in its 
budget for GFDL and NCAR is a Federally-funded research and development center 
(FFRDC) operated by NSF—to the tune of $40M and $200M per year, respectively. 
Much of this money is spent on high-performance computing (HPC). Combining these 
numbers with the $1.1B spent by the National Weather Service (NWS), also under NOAA, 
gives some sense of the kind of support it takes to mount a scientific enterprise at 
continental scale. By comparison, the entire budget of NSF’s Social and Economic 
Sciences (SES) Division, within the larger Social, Behavioral & Economic Sciences 

                                                
63 Other aspects of forecasting social systems have been addressed by Hofman, Sharma and Watts (2017). 
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(SBE) Directorate, is about $100M annually, the Economics Program receiving about 
$30M in a recent fiscal year. 

Creating a branch of economic modeling that is a community activity will likely 
take a generation, as it did with numerical weather and climate models. Figure 7 portrays 
the historical evolution of weather and climate models. If high performance computing 
technologies are going to come to the economics profession, we should learn from the 
model for husbanding computational resources and building scientific constituencies that 
atmospheric and oceanic scientists have built. 

<Figure 7 about here> 

J. Opportunity: Incorporation of Machine Learning into ABM 
 Machine learning (ML), particularly in the guise of deep neural networks, has 
rapidly grown in importance within computer science and AI in recent years, as 
evidenced by the AlphaGo champion Go player (Silver et al., 2016) and subsequent 
Alpha Zero algorithm that has mastered multiple games (Silver et al. 2018). Such deep 
learning AI technologies have more recently demonstrated the ability to win in poker 
against multiple human players, a feat that requires accounting for bluffing and related 
deceptive behavior (Brown and Sandholm, 2019). ML techniques have just started 
making their way into ABM, in a variety of forms. Here we describe several of these that 
we think are fertile approaches for enhancing ABMs going forward (though it remains 
unclear which of these will be most successful). 
 There is a long history in ABM and multi-agent systems computer science of 
using ML algorithms to represent human behavior. For example, reinforcement learning, 
in general, and Q learning, specifically, have found wide use for agents in settings where 
they must learn the reward structure of their environment over a series of actions or plays 
of a game (Sutton and Barto, 2018). Luna (1998) and Terna (1999) built ABMs associated 
with labor markets in which individual workers were represented by simple neural 
networks. LeBaron (2001, 2002) outfitted agents with richer neural networks for 
purposes of learning how to best behave in a financial trading environment. These 
pioneering uses of neural networks to describe agent behavior occurred before the deep 
learning revolution. More recently, ABMs have appeared in which individual agents use 
deep neural networks to make trading decisions in financial market models (Georges, 
2021). 
 ML has also been used to facilitate the estimation and calibration of ABMs. Given 
that large-scale ABMs, in particular, can be computationally expensive, several authors 
have turned to ML techniques to reduce the computational burden associated with 
parameter estimation (van der Hoog et al., 2015 and Roventini et al., 2017). Relatedly, 
so-called Gaussian process models (Santer, Williams, and Notz, 2018) have been utilized 
to create reduced form representations of ABM output to more rapidly estimate 
parameters (Sokolov 2019), specifically, and understanding model output, generally 
(Banks 2020). 

K. Opportunity: ABM as a Teaching Tool 
As Economics has matured as a discipline and instructional content has become 

standardized, the textbooks have grown ever thicker and we ask students to read more 
and more, either explicitly, as stipulated on syllabi, or implicitly, given the heft of the 
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texts. While reading is a traditional path toward learning, not all students are traditional 
learners. Reading 500 or more pages over the course of a semester is not something that 
is readily accomplished by all students. While various modern forms of educational 
materials, from instructional slides to ebooks and apps, are available for many economics 
courses, contemporary curricula do not give students the ability to interact and 
experiment with virtual economies. While initial attempts to provide somewhat 
interactive materials exist, for example in the guise of computable general equilibrium 
(CGE) models (Thompson and Thore, 1992) or dynamic stochastic general equilibrium 
(DSGE) codes (Adjemian et al., 2018), these have not found wide use for instructional 
purposes. 

A potential opportunity for ABM is in the classroom where specific ideas can be 
illustrated with working models and then students could actively engage with software to 
perform ‘what if’ and related analyses. The zero-intelligence NetLogo code of McBride, 
discussed above, is an example of what can be done to understand supply and demand. 
Given that the main abstraction of ABM is the individual agent, and that this comports 
closely to the methodological individualism of the entire field, most areas of economics 
and finance could be illuminated for students through the creation of ABMs on specific 
topics. Miniature economies could be created precisely for purposes of self-instruction 
and experimentation by students. Such ‘synthetic economies’ need not have high-fidelity 
with any real economy, and thus do not need to be large-scale in nature, but rather they 
could be representative of typical economies so that when students vary parameters and 
test hypotheses they generate model output that is qualitatively similar to how actual 
economies operate. Perhaps someday soon economics textbooks will have links to 
working ABMs illustrating key points. 

V. Conclusion: ABMs as an Emerging Methodology for Economists 
Computational economies composed of software agents represent a new paradigm 

for economic research. Their role in substantive model building is yet nascent with some 
clear successes, as in finance. Nonetheless, many areas remain relatively untouched by 
this new technique. 

A. ABM as a Modern Computational Methodology for Economics and Finance 
By now it is hopefully clear that the strengths of the multi-agent systems 

methodology for economic model building involve its expressiveness (through behavioral 
rules not rationality assertions), its ability to be implemented technologically (via 
software objects), its extensibility (as the user community learns how to share and extend 
models), its ability to let macroscopic structures emerge (no need for pre-specification of 
what will happen), its agnosticism toward agent-level equilibrium, and its tractability 
(i.e., scaling as the number of agents increases and the ability to ‘look under the hood’ to 
see what one’s code is doing). These many features of the methodology conspire to 
produce great potential for relaxing some of the strong assumptions that are required for 
making standard mathematical models in economics.  

Perhaps these many features of ABM methodology can serve all branches of the 
economic profession, from the behavioral economist’s desire to better represent human 
behavior, to the applied economist’s efforts to more realistically specify models and test 
them with data, to the theorist’s focus on basic insight from abstract, stylized models. 
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B. ABM as Analogous to Earlier Methodological Evolutions in Economics 
The recent development of ABM and its application to problems in economics and 

finance is broadly comparable to developments in other areas of economics, some closely 
related. 

The appearance of von Neumann’s and Morgenstern’s monograph (1944) opened 
up a whole new field in economics for immediate exploitation in the post-WWII era.64 A 
bevy of important game theorists came through the Princeton Mathematics Department at 
this time, including John Nash, Lloyd Shapley, Martin Shubik and later Robert Aumann 
and Alan Kirman. Initially, game theory appeared to be far from economics proper, and 
most of these people took jobs in math departments. It was not until the 1980s that game 
theory really took off within economics, primarily because models of antitrust behavior 
led to its widespread application by the Department of Justice. By the 1990s game 
theorists were actively recruited by economics departments, representing more than a 40 
year lag from the birth of the discipline to its widespread adoption. This is for a 
methodology that was as mathematical as the field it was trying to penetrate. 

The situation in behavioral and experimental economics is perhaps like that in 
game theory, but with a 15-20 year lag. The initial results in these fields began appearing 
in the late 1950s, but it was not until the 1990s that behavioral economics began to be 
accepted in mainstream economics departments, with hiring really taking off only in the 
2000s, again some 40+ years after inception. 

Figure 8 is a plot of the number of published papers over time that make overt use 
of game theory as a main methodology (green), experimental techniques (magenta) and 
ABM (blue). (The numbers for game theory and ABM include all fields, not just 
economics.) The figure on the left is in linear coordinates and an exponential takeoff for 
each is apparent. The figure on the right is in log coordinates on the vertical axis and the 
roughly straight lines indicate exponential growth. Note that the takeoff phase for ABM 
has occurred with smaller lag from inception than in either of these other areas. Clearly 
ABMs resemble these other areas with a lag. Given these patterns it would seem 
reasonable to expect continued penetration of agent techniques into economics. 

<Figure 8 about here> 

C. Computational Progress in Other Areas of Science 
We are living through a computational revolution. We have already compared 

advances in computational economics to those that are occurring in nearly every other 
branch of science. Earlier in this section we made explicit comparisons to numerical 
weather and climate computing. Among the most ambitious computational models to date 
are general circulation models (GCMs) used by climate scientists to forecast the likely 
effects on Earth’s climate of human-produced emissions of (fossil) carbon, primarily 
from combustion. These models are written at Earth-scale and include atmospheric, 
oceanic, and terrestrial zones, each disaggregated into millions of discrete bins. 
Substantial progress in climate modeling has occurred over time. Better hardware and 
deeper understanding of the science involved drives this progress, while the community 
structure of the models facilitates it. Advances in weather models have been steady over 
                                                
64 The Morgenstern diaries recount that some early mathematical economists were nonplussed by game theory in the 
1940s and ‘50s. 
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the past 35-40 years, as shown in figure 9, with 5 day forecasts approximately as accurate 
as 3 day forecasts were at the turn of the millennium. As remote sensing continues to 
provide better data, as computing hardware grows in capabilities, and as machine 
learning and other software innovations are brought to bear, weather forecasting will only 
improve.  

<Figure 9 about here> 

D. Computational Economics and the Economics of Computation 
A generalized version of Moore’s law amounts to the statement that 

microprocessor hardware capabilities grow exponentially with time. This is largely 
independent of how performance is measured, whether in CPU frequency, floating point 
operations/second (FLOPS), transistor or memory density, hard disk capacity, or external 
communication rates. In most of these dimensions, performance has doubled each 18-24 
months over the past two-three decades, although along some dimensions progress has 
stalled, leading to multi-core CPUs. These developments are depicted in figure 10. A 
microeconomic way of describing these developments is that the cost of a unit of 
computation has fallen exponentially fast for several generations. As the price of 
computing falls economists will use more of it, unless it is an inferior good!  

We have no doubt that as computing technology continues to improve researchers 
in economics and finance will make progressively more and more use of it, for numerical 
economics, ABM, SNA, machine learning, high-frequency trading, and so on. It may not 
be long before we can manage our computational models from our mobile phones. We 
are well on our way toward what we might reasonably call computationally-enabled 
economics (Axtell, 2008). Indeed, the biggest challenge that researchers would seem to 
face today may be, ‘What can we possibly achieve, on the modest hardware we have at 
our disposal, that will be of interest to future generations of scholars who have 10x or 
100x or 1000x more?’ The risk of computational economics today is not that it is being 
adopted too quickly, potentially over-running conventional, analytical approaches, but 
rather that it is being adopted so slowly that as the price continues to fall we will be 
deluged with it without knowing fully how to use it. To a first approximation the cost of 
updating a single agent in an ABM—the marginal cost of agent computing—is falling 
toward zero. Will this lead to changes in the economics profession the way the Internet, 
with its near zero marginal cost of distributing email, news, magazines, books, images, 
money, control, security, surgery, even life-and-death communications, has changed all 
of our lives in the past two decades, for both better and worse? Time will tell. 

<Figure 10 about here> 
Among the many flavors of computational economics, ABM is poised to fully utilize 

our rapidly expanding computational power and data resources. Greater compute power 
means that natural scientists can model larger systems or build models of specific 
phenomena at higher spatial and/or temporal resolutions. Numerical economics, along 
with its close cousins computational econometrics, computable general equilibrium 
modeling, and even microsimulation, typically do not fully utilize all the parts of the 
machine, i.e., they may use the greater processing power of CPUs, even GPUs, but 
typically do not utilize that enormous amounts of RAM that can be addressed today, or 
they use large-scale storage but make no use of the tremendous visualization capabilities 
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that modern workstations often possess. Agent computing techniques, on the other hand, 
permit the complete utilization of all extant hardware—CPUs, GPUs, RAM, disks, 
displays with millions of color pixels and palettes, fast networks, all cores, etc.65 

One of the main results of financial economics concerns portfolio diversification. 
Under standard Markowitz portfolio criteria, assets with low correlation to the rest of the 
portfolio are assigned positive weights as long as their mean expected return is positive. 
Similar reasoning should apply to the research portfolio of economics. ABM certainly 
satisfies the criterion of low correlation to standard methods. We hope that we have 
demonstrated here that it has a substantial positive expected mean return, and should thus 
play a larger role in economic research in the future.66 

Between ever-increasing computer power to execute agent-based models, the new 
availability of micro-data to parameterize such models, and ongoing advances in 
behavioral and experimental economics to provide rules of behavior for the agents in 
ABM, the time is ripe for the field of economics to embrace agent computing as another 
tool in its quiver as it tries to solve hard problems associated with complex economies. 
  

                                                
65 This point has been made at length elsewhere (Axtell, 2008). 
66 This point is reinforced by sociological studies that show that a diversity of viewpoints results in better solutions 
(Page, 2007). 
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Appendix 1: Meanings of Acronyms Mentioned 
ABE: agent-based economics 
ABM: agent-based modeling or agent-based model 
ACE: agent-based computational economics 
AI: artificial intelligence 
ALife: artificial life 
BR: bounded rationality 
CA: cellular automaton or automata 
CAS: complex adaptive system 
CDA: continuous double auction 
CES: constant elasticity of substitution 
CGE: computable general equilibrium model 
CRISIS: European Union funded project to model the Financial Crisis with ABM 
DAI: distributed artificial intelligence 
DSGE: dynamic stochastic general equilibrium model of macroeconomics 
EU: European Union 
EWA: experience-weighted attraction, an empirically-grounded learning algorithm 
FFRDC: Federally-funded research and development corporation 
GARCH: generalized autoregressive conditional heteroskedasticity 
GFDL: Geophysical Fluid Dynamics Laboratory at Princeton University 
GIS: geographic information systems 
GSIA: Graduate School of Industrial Administration at the Carnegie Institute of 

Technology; today: Tepper School of Business at Carnegie-Mellon University 
IBM: individual-based model 
LANL: Los Alamos National Laboratory 
LFN: labor flow network 
MAS: multi-agent systems 
MERS: Middle East Respiratory Sickness 
MIDAS: Models of Infectious Disease Agent Study at NIH 
MLS: Multiple listing service, a real estate firm and data aggregator 
MRS: marginal rate of substitution of one good for another 
NASDAQ: National Association of Securities Dealers Automated Quotations 
NCAR: National Center for Atmospheric Research 
NIH: National Institutes of Health 
NOAA: National Oceanic and Atmospheric Administration 
NSF: National Science Foundation 
NWS: National Weather Service 
OFR: Office of Financial Research within the Department of Treasury 
OR: operations research 
REE: rational expectations equilibrium/equilibria 
SARS: severe acute respiratory syndrome 
SBE: Social, Behavioral & Economic Sciences Directorate at NSF 
SD: system dynamics, modeling approach pioneered by Jay Forrester at MIT 
SEC: U.S. Securities and Exchange Commission 
SES: Social and Economic Sciences Division at NSF 
SNA: social network analysis 
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SOES: Small Order Execution System on the NASDAQ 
UCAR: University Consortium for Atmospheric Research 
V&V: verification and validation 
VaR: value at risk 
WMAD: Walras-McKenzie-Arrow-Debreu model of general equilibrium 
ZI: zero-intelligence, trading agents who act purposively but without an internal model 
ZIP: zero-intelligence plus trading agents  
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Appendix 2: Computer Terms, Languages, and Systems Discussed 
ABM: agent-based model or agent-based modeling 
ACT-R: computational cognitive architecture 
AgentSheets: simple, user-friendly ABM software environment 
ASCII: American Standard Code for Information Interchange, for character encoding 
BASIC: early programming language, little used today 
BDI: belief-desires-intentions representation of agent behavior, popular in MAS 
C: early low-level programming language, still in wide use today 
C++: object-oriented version of C 
C#: object-oriented programming language from Microsoft 
CLARION: computational cognitive architecture 
CMIP: Coupled Model Intercomparison Project 
CORMAS: ABM software commonly used for natural resource models 
CPU: central processing unit 
DP: dynamic programming, pioneered by Richard Bellman in the 1950scu 
DSGE: dynamic stochastic general equilibrium model of macroeconomics 
EINSTEIN: combat modeling toolkit 
EPISIMS: epidemic simulation code derived from TRANSIMS at Los Alamos 
EurACE: agent-based macroeconomic model in use in Europe for research and policy 
FLAME: ABM software environment for running models on GPUs 
FLOPS: floating point operations per second 
FORTRAN: early programming language, still in use today for scientific computing 
GAMS: General Algebraic Modeling Systems 
GEMS: General Electric modeling and simulation language 
GPSS: general purpose simulation system 
GPU: graphics processing unit 
HPC: high-performance computing 
ISAAC: Irreducible, Semi-Autonomous Adaptive Combat model, early military ABM 
JABOWA: early forest simulation system in IBM ecology 
Java: OOP language originally created by Sun Microsystems, currently owned by Oracle 
MABM: macroeconomic ABM 
MASON: ABM software framework in Java from George Mason University 
Mathematica: commercial mathematics software and programming package 
MATLAB: commercial software package 
MESA: ABM software framework in Python 
NetLogo: popular ABM environment requiring modest programming background 
NP: complexity class of problems solvable nondeterministically in polynomial time 
Objective-C: early object-oriented programming language, still in use at Apple 
ODD: protocol for reporting ABMs 
OOP: object-oriented programming 
P: complexity class of problems solvable in polynomial time 
PAC: probably approximately correct learning, a learning algorithm 
Pascal: programming language created at ETH Zurich in the 1970s, litte used today 
PPA/PPAD: complexity classes between P and NP; polynomial parity argument on either 

undirected or directed graphs 
RAM: random access memory 
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RePast and RePast HPC: open source ABM software framework in Java, C++, and C# 
from Argonne National Laboratory 

RNG: random number generator 
SimScript: early simulation language, still in use today 
SIMULA: the first OOP language and a family of simulation languages 
SmallTalk: early object-oriented programming language, in little use today 
SOAR: early computational cognitive architecture 
StarLogo: early programming language for beginners from MIT 
Sugarscape: early ABM in which agents forage for resources and engage in exchange 
SWARM: early agent-based modeling language 
TRANSIMS: transportation simulation code created at Los Alamos  
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Appendix 3: Implementation of ABMs 
Creating an ABM involves some amount of computer programming, so a 

researcher’s ability to effectively utilize this new approach is often proportional to one’s 
computing skills. But no very specific computational background is required, since ABMs 
can be created in a wide variety of ways. While courses in algorithms and data structures 
are helpful, the most important skill to possess for creating an ABM is strong command of 
some specific programming language, such as Java, Python, C/C++, C#, and so on. By 
far the most common question people have who are new to ABM is ‘What software 
should I use to build my model?’ This question has many facets and picking the wrong 
software for a project can be disastrous. Here we provide some guidelines based on 
current technology. Happily, there are good comparisons of existing software packages—
Kravari and Bassiliades (2015), supplementing older ones of Gilbert and Bankes (2002) 
and Dibble (2006)—meaning we can be brief, editorializing a bit based on our 
experience. 

There are essentially four distinct ways to create an ABM, (1) code in a native 
programming language like Java or Python, (2) write your model in a mathematical or 
statistical environment like MatLab, R, or Mathematica, (3) code your model using a 
software framework for ABM like RePast, MASON, AnyLogic, FLAME, or MESA, or (4) 
create your model in a high-level, ABM-specific software environment like NetLogo or 
HashAI. Each of these systems has advantages and disadvantages, so selection involves 
trade-offs. Specifically, the lower the number on our list the faster your model will 
probably run, eventually, once it is successfully coded and debugged. However, the 
coding and debugging time declines as the number on our list gets higher. For example, 
native Java code is going to run much faster than NetLogo code but it might take you 
significantly longer (2-10x) to get a non-trivial model up and running in Java than in 
NetLogo. 
Empirically, most ABMs used for research in economics are built in NetLogo, MASON, or 
RePast. These are each mature systems with large user bases, reasonable documentation, 
and performance good enough to use for research. In finance it is probably the case that 
more than half of all ABMs are created in MatLab. This is because that system is 
designed to high-performance numerical computation and is especially suitable for 
solving equations—agents in finance ABMs often have to solve portfolio optimization, 
arbitrage, and other mathematical problems in determining how to behave. We 
summarize the characteristics and performance of these four systems in table 4 where we 
also include Mathematica, not because it is widely used for ABM but because many 
economists use it. Software systems less often used for research ABM include SWARM 
(Minar et al., 1996, Terna, 1998, Luna and Stefansson, 2000, Stefansson, 2000), 
CORMAS (LePage et al., 2000), and AgentSheets (Repenning, Ioannidou and Zola, 
2000), and we will not say more about these here. For each of the entries in the table we 
provide a few points of description and one or more references to the literature. NetLogo 
(Wilensky and Rand, 2015) combines a programming language (having hybrid OOP and 
functional features) with an highly configurable development and analysis environment. 
It is excellent for rapid-prototyping but too slow for large models. MASON (Luke et al., 
2005) is based on Java and requires users to code in that language. It has excellent 
analysis and visualization interfaces. RePast (North, Collier and Vos, 2006) users code 
their model in either Java or C#. It has many features in common with MASON. MatLab 
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has object extensions but they were added relatively recently and are often not used by 
people writing ABM code. Its performance is good. Objects are not a natural part of 
Mathematica but the functional aspects of its programing language means that ABMs can 
be written very compactly. For instance, Gaylord and D'Andria (1998) have programmed 
the Schelling model in 5 lines of Mathematica code! However, it tends to be slower than 
the others in execution of ABM. 

Software OOP? Programming Compiled? Animations? Speed Max agents 
NetLogo yes own language no yes slow 10K-100K 
MASON yes Java byte code yes good 1M or more 
RePast yes Java, C# byte code yes good 1M or more 

AnyLogic yes Java byte code yes good 1M 
MatLab partial own language can be yes good 1M 

Table 4: Comparison of several software environments for creating ABMs 

A newer approach to ABM deserving of brief mention is through programming the 
video boards that are part of all modern microcomputers. These so-called graphics 
processing units (GPUs) have greatly improved their performance with progress in video 
game technology. D'Souza, Lysenko and Rahmani (2007) programmed the Sugarscape 
model to run 1,000,000 agents at 25 frames/second while only a few hundred agents 
could run at that speed when the model was first created (Epstein and Axtell, 1996). 
FLAME is an ABM programming environment designed specifically for GPUs (Kiran et 
al., 2010). 
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Figure 1: Onset of segregation in a realization of a Schelling model of residential choice from random 
initial conditions (upper left) through changing conditions (upper right) to segregated neighborhoods 
(lower left), and actual segregation in Buffalo, N.Y. c. 2010, with each person represented by one pixel 
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Figure 2: Screen capture from the zero intelligence trader model of M. McBride, in NetLogo software; the 
red line is the supply curve, the blue line demand, and the black line represents prices paid; other figures 
show overall market efficiency and price dispersion; each realization of the model yields a different result 
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Figure 3: Example paths for the price of the risky asset from Aymanns et al. (2016). In the top panel, banks behave like 
households, i.e. they do not adjust their balance sheets following a change in leverage. Prices roughly follow a random 
walk – volatility is driven by the exogenous noise fed into the system. In the bottom panel, banks actively manage their 
leverage attempting to achieve a risk-dependent target leverage, similar to broker-dealers. Prices now show 
endogenous, stochastic, irregular cycles. 
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Figure 4: Output from an agent-based housing market bubble model, with data shown as dashed lines and 

model output solid black lines 
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Figure 5: A two level economy with x(t) the micro-level, y(t) the macro level, with aggregation functions 

a() mapping states from micro to macro 
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Figure 6: A three level economy with x(t) the micro-level, y(t) the meso-level, and z(t) the macro level, with 
aggregation functions a(.) and b(.) mapping states from micro to meso and meso to macro, respectively 

 
  



Agent-Based Modeling in Economics and Finance: Past, Present, and Future 

69 

 
 
 
 
 

 
Figure 7: Growth of community models in weather and climate research; source: Higdon et al. (2016) 
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From Maps to Models:  Augmenting the Nation's Geospatial Intelligence Capabilities

40 FRoM MAPS to ModelS

In contrast to empirical models that do not attempt to represent the inner workings of a system, process models 
are typically built to simulate the processes and behavior of physical or social systems, which often evolve over 
time. Such models, which can be based on theory (e.g., equations of fl uid fl ow) and/or rough rules (e.g., presumed 
response of individuals to a situation for which no data exist), examine the possible responses of a system to 
changes in conditions. Components can be coupled to allow two-way interaction, and interactions that determine 
the response of a system to a disturbance (feedbacks) should be represented. Developing process models is typi-
cally demanding and involved. If many components and feedbacks are required to represent the system, model 
development will require substantial labor, time, and computing resources.

Model run time is also an important consideration, because model-based analyses can require anywhere from 
tens to millions of model runs or be so complex that days to months are required to complete the simulation. 
Run time can be reduced by increasing computational resources and effi ciency or by developing reduced mod-
els. Reduced models use coarser, simpler, or fewer representations of processes than a full model. They could be 
based on simpler mathematical representations (e.g., reduced-order models; Willcox and Peraire, 2002), a few 
processes (e.g., motivated metamodels; Davis and Bigelow, 2003), or a response surface trained on an ensemble 
of full model runs (e.g., emulators; Sacks et al., 1989). Developing a reduced model that captures only the most 
important features for the application at hand may prove advantageous for analyses that require many model runs 
or long simulation times.

Most computational models are not based solely on fi rst principles; rather, they contain many empirical speci-
fi cations and parameters that help defi ne the system being studied. As understanding increases, the number of 
components and feedbacks that are represented in the model, rather than specifi ed empirically, tends to increase 
(e.g., Figure 3.3). Such complex models strike a balance between retaining process fi delity (consistency of sub-
system models with observations of process-specifi c variables) and system calibration (consistency of the system 
with observations of system-level variables). Complex model systems can be relatively brittle and challenging to 
construct, but the effort is warranted by the confi dence that the calibration does not drive the system out of con-
sistency with observations at the process level. In other words, the model will not produce the right answer for the 
wrong reasons, simply by tuning.

FIGURE 3.3  Evolution of climate model development. Over the years, the number of components being modeled 
has increased, as has the size and disciplinary expertise of the teams developing the models. SOURCE: Modifi ed 
from Washington et al. (2009).
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Figure 8: Number of papers appearing each year that explicitly identify as using game theory (green), 

experimental economics (magenta), and ABM (blue) methods, (a) linear and (b) log coordinates 
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Figure 9: Numerical weather forecasting has gotten significantly better over time. Forecast horizons are 3 
days ahead, 5 days ahead, 1 week ahead, and 10 days ahead. The top curve in each case is for the Northern 
Hemisphere and the bottom curve is for the Southern Hemisphere; satellite observations have reduced the 
gap between Hemispheres through time. Forecast skill greater than 60% indicates a useful forecast and 

greater than 80% a high degree of accuracy (Bauer, Thorpe and Brunet, 2015). 
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Figure 10: Evolution of computer hardware with total transistors following Moore’s law, with the 

performance of individual processors plateauing and greater overall performance achieved with more 
cores (right); convergence of commodity computing to high-performance computing over time 
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